

Contents

Preface	v
Preface to English Edition	vii
List of Abbreviations	ix
1 General Concepts of Porphyrin and Phthalocyanine Complexes	1
1.1 Specific Features of Natural and Synthetic Porphyrin Complexes	1
1.2 Metalloporphyrins in Biological Systems. Industrial Uses of Phthalocyanine Complexes	4
1.3 The Role of Complexing in the Formation, Dissociation, and Functioning of Metalloporphyrin Systems	9
2 Synthesis, Isolation, and Purification of Porphyrin and Phthalocyanine Complexes	11
2.1 Isolation of Porphyrin Complexes (Chlorophyll, Haemin) and the Corresponding Porphyrins from Natural Sources	11
2.2 Synthesis of Complexes of Various Porphyrins	13
2.3 Synthesis of Spectroscopically Pure Phthalocyanine, Polymeric Phthalocyanine, and Their Complexes	17
3 Molecular Structure of Porphyrins and Phthalocyanine	23
3.1 Aromatic Nature of Porphyrins	23
3.2 Structural Features of Phthalocyanine and Porphyrin Molecules	26
3.3 Quantum-chemical Data on the Structure of Porphyrins and Phthalocyanine	36
4 Ionization and Coordination Properties of Porphyrins and Phthalocyanine	39

IONIZATION PROPERTIES

4.1	Acid Dissociation of Porphyrins and Phthalocyanine	40
4.2	The State of Porphyrin and Phthalocyanine Molecules in Proton-donor Media	59
4.3	Thermodynamics of Acid-Base Interaction of Phthalocyanine and Porphyrin Complexes	66
4.4	Enthalpy-Entropy Characteristics of Processes of Protolytic Dissolution and Protonation of Phthalocyanine Complexes	76

COORDINATION PROPERTIES

4.5	Electronic Effects of Coordination	80
4.6	Kinetics of Formation of Chlorophyll and Its Metal Analogues in Organic Solvents	84
4.7	Kinetics of Formation of Haemin and Its Analogues in Solution	103
4.8	Reactivity of Other Porphyrins in Coordination Reactions	106
4.9	Mechanism of Formation of Metalloporphyrins in Solution	120
4.10	The Role of Acid-Base Interaction in Complexing Reactions	131
5	The Kinetics and Mechanism of Protolytic Dissociation of Porphyrin and Phthalocyanine Complexes	135
5.1	Dissociation of Phthalocyanine Complexes and Their Polymers in Proton-donor Media	135
5.2	Dissociation of Chlorophyll, Haemin, and Their Analogues	144
5.3	Influence of the Solvent on Dissociation	169
5.4	Metalloporphyrin Dissociation Mechanism	175
5.5	Kinetic Criterion of Stability of Porphyrin and Phthalocyanine Complexes	183
6	Thermodynamics of Porphyrin and Phthalocyanine Complex Formation	189
6.1	Results of Direct Equilibrium Measurements	189
6.2	Calculation of Equilibrium Constants from Kinetic Data	191
6.3	Stability Series. Factors Responsible for High Stability of Macrocyclic Complexes	194
6.4	Extra Coordination in Porphyrin Complexes	199
7	Electron-optical Properties and Their Correlation with Other Properties of Porphyrin and Phthalocyanine Complexes	209
7.1	On the Origin of Bands in Electronic Absorption Spectra of Porphyrins and Their Complexes	209
7.2	Manifestation of Ionization and Coordination Properties of Porphyrins in Absorption Spectra	214

7.3	Spectral Criterion of Stability of Porphyrin and Phthalocyanine Complexes	219
7.4	Spectral Data on the Cyclopentanone Ring of Chlorophyllic Acid and Its Complexes	225
7.5	Spectral Manifestations of Association of Porphyrins in Solution	228
7.6	Polymeric State of Phthalocyanine and Its Optical Properties	233
8	Other Properties of Metalloporphyrins	237
8.1	Photochemical Stability of Chlorophyll and Its Metal Analogues in Solution	237
8.2	Oxidation-Reduction Reactions	242
8.3	Catalytic Activity	249
8.4	Semiconductor Properties of Phthalocyanine Complexes	255
Conclusion		259
References		265
Index		281

the four equivalent, or almost equivalent, coordination donor-acceptor sites. If the interaction between the metal and the porphyrin cation is purely electrostatic, labile ion complexes are formed. These include complexes of Na^+ , K^+ , Rb^+ , Cs^+ , Be^{2+} , Sr^{2+} , Ba^{2+} , Ca^{2+} , and some other cations. But if the electrostatic interaction involves filling of the vacant orbitals of the central atom by the electrons of the donor N atoms of the ligand, stable porphyrin complexes of the covalent or predominantly covalent type are formed. In this case we have complexes of Fe^{2+} , Fe^{3+} , Cr^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Mn^{2+} , Cr^{3+} , Al^{3+} , Ga^{3+} , Sn^{4+} , Ge^{4+} , Sc^{3+} , Ti^{4+} , V^{4+} , P^{5+} , O^{6+} , and other cations. Most of the above complexes are formed by biometals. As will be seen from what follows, complexes of porphyrins with Mn^{2+} that is chlorophyll and its structural analogues, do not belong either to purely ionic complexes or to the stable group of predominantly covalent complexes. This peculiarity of chlorophyll, stemming from its intermediate position in the complex stability series, is to some extent responsible for its unique role in nature.

In contrast to chlorophyll, the complex of protoporphyrin with Fe^{2+} (Fe^{3+}) is one of the most stable metalloporphyrins of the covalent type. This property is fully consistent with both the biological composition of the medium in which heme acts as a complex with protein and with its biological functions.

The specific features of metalloporphyrins as intercomplex compounds are due not only to the polydentate (tetradentate) nature of the ligand but also to its rigidity. The latter is determined by the planar structure of the large ring of the porphyrin molecule, by the unique conjugation in it which