

Contents

Remarks on Volume 2, xvii

Part I

Processing of Thermoplastic Polymers

1 Flow of Polymeric Liquid in Complex Geometry, 3

- 1.1 Introduction, 3
- 1.2 Flow through a Rectangular Channel, 4
 - 1.2.1 Flow Patterns in a Rectangular Channel, 4
 - 1.2.2 Extrudate Swell from a Rectangular Channel, 6
 - 1.2.3 Analysis of Flow through a Rectangular Channel, 6
- 1.3 Flow in the Entrance Region of a Slit Die, 20
- 1.4 Flow through a Converging or Tapered Channel, 25
- 1.5 Exit Region Flow, 32
- 1.6 Flow through a Channel Having Small Side Holes or Slots, 35
- 1.7 Analysis of Flow in a Coat-Hanger Die, 40
 - 1.7.1 Analysis of Flow in the Manifold, 42
 - 1.7.2 Analysis of Flow in the Coat-Hanger Section, 45
- 1.8 Summary, 48
- Problems, 49
- Notes, 53
- References, 54

2 Plasticating Single-Screw Extrusion, 56

- 2.1 Introduction, 56
- 2.2 Performance of Plasticating Single-Screw Extruders for Semicrystalline Polymers, 57
 - 2.2.1 Analysis of the Solid-Conveying Section, 59
 - 2.2.2 Analysis of the Melting Section, 60
 - 2.2.3 Analysis of Melt-Conveying Section, 67
 - 2.2.4 Comparison of Prediction with Experiment, 68
- 2.3 Performance of Fluted Mixing Heads in a Plasticating Single-Screw Extruder, 85
 - 2.3.1 Analysis of the Flow through the Maddock Mixing Head, 86
 - 2.3.2 Comparison of Prediction with Experiment, 90
- 2.4 Performance of Plasticating Barrier-Screw Extruders, 98
 - 2.4.1 Stability of the Solid Bed in a Plasticating Barrier-Screw Extruder, 102
 - 2.4.2 Analysis of the Performance of Plasticating Barrier-Screw Extruders, 107
 - 2.4.3 Comparison of Prediction with Experiment, 111
- 2.5 Performance of Plasticating Single-Screw Extruders for Amorphous Polymers, 114
 - 2.5.1 The Concept of Critical Flow Temperature, 115
 - 2.5.2 Analysis of Plasticating Extrusion of Amorphous Polymers, 116
 - 2.5.3 Comparison of Prediction with Experiment, 119
- 2.6 Summary, 128
 - Notes, 129
 - References, 130

3 Morphology Evolution in Immiscible Polymer Blends during Compounding, 132

- 3.1 Introduction, 132
- 3.2 Morphology Evolution in Immiscible Polymer Blend during Compounding in an Internal Mixer, 134
 - 3.2.1 Morphology Evolution in Blends Consisting of Two Semicrystalline Polymers, 137
 - 3.2.2 Morphology Evolution in Blends Consisting of Two Amorphous Polymers, 140
 - 3.2.3 Morphology Evolution in Blends Consisting of an Amorphous Polymer and a Semicrystalline Polymer, 144
- 3.3 Morphology Evolution in Immiscible Polymer Blend during Compounding in a Twin-Screw Extruder, 154
 - 3.3.1 Morphology Evolution in Blends Consisting of Two Amorphous Polymers, 156
 - 3.3.2 Morphology Evolution in Blends Consisting of an Amorphous Polymer and a Semicrystalline Polymer, 161

- 3.4 Stability of Co-Continuous Morphology, 169
- 3.5 Summary, 174
 - Appendix: Theoretical Interpretations, 179
 - References, 179

4 Compatibilization of Two Immiscible Polymers, 191

- 4.1 Introduction, 191
- 4.2 Experimental Observations of the Morphology of Immiscible Homopolymers Under Shear
 - 4.2.1 A/B/(*A*-block-*B*) Terpolymer, 192
 - 4.2.2 A/B/(*A*-block-*C*) Terpolymer, 193
 - 4.2.3 A/B/(*C*-block-*D*) Terpolymer, 194
- 4.3 Reactive Compatibilization of Two Immiscible Polymers, 195
 - 4.4 Summary, 229
 - Notes, 231
 - References, 232

5 Wire-Coating Extrusion, 235

- 5.1 Introduction, 235
- 5.2 Analysis of Wire-Coating Extrusion, 236
- 5.3 Experimental Observations, 237
- 5.4 Summary, 253
 - Problems, 255
 - Notes, 256
 - References, 256

6 Fiber Spinning, 257

- 6.1 Introduction, 257
- 6.2 Fiber Spinning Processes, 258
 - 6.2.1 Melt Spinning Process, 258
 - 6.2.2 Wet Spinning Process, 259
 - 6.2.3 Dry Spinning Process, 260
 - 6.2.4 Other Fiber Spinning, 261
- 6.3 High-Speed Melt Spinning, 262
 - 6.3.1 Experimental Observations, 262
 - 6.3.2 Modeling of High-Speed Spinning, 269
 - 6.3.3 Model Prediction and Validation, 272
- 6.4 Spinnability, 294
- 6.5 Summary, 296
 - Problems, 297
 - Notes, 300
 - References, 302

e-Screw Extruders for

eveying Section, 59

ction, 60

g Section, 67

ith Experiment, 68

ads in a Plasticating

h the Maddock Mixing

ith Experiment, 90

r-Screw Extruders, 98

a Plasticating

2

e of Plasticating

7

ith Experiment, 111

-Screw Extruders for

Temperature, 115

usion of Amorphous

ith Experiment, 119

Polymer Blends during

le Polymer Blend during

134

ends Consisting of Two

37

ends Consisting of Two

ends Consisting of an

emicrystalline Polymer, 144

e Polymer Blend during

uder, 154

nds Consisting of Two

nds Consisting of an Amorphous

e Polymer, 161

- 3.4 Stability of Co-Continuous Morphology during Compounding, 169
- 3.5 Summary, 174
- Appendix: Theoretical Interpretation of Figure 3.34, 177
- Notes, 179
- References, 179

4 Compatibilization of Two Immiscible Homopolymers, 181

- 4.1 Introduction, 181
- 4.2 Experimental Observations of Compatibilization of Two Immiscible Homopolymers Using a Block Copolymer, 186
 - 4.2.1 A/B/(A-block-B) Ternary Blends, 187
 - 4.2.2 A/B/(A-block-C) Ternary Blends, 194
 - 4.2.3 A/B/(C-block-D) Ternary Blends, 210
- 4.3 Reactive Compatibilization of Two Immiscible Polymers, 224
- 4.4 Summary, 229
- Notes, 231
- References, 232

5 Wire-Coating Extrusion, 235

- 5.1 Introduction, 235
- 5.2 Analysis of Wire-Coating Extrusion, 236
- 5.3 Experimental Observations, 245
- 5.4 Summary, 253
 - Problems, 255
 - Notes, 256
 - References, 256

6 Fiber Spinning, 257

- 6.1 Introduction, 257
- 6.2 Fiber Spinning Processes, 258
 - 6.2.1 Melt Spinning Process, 258
 - 6.2.2 Wet Spinning Process, 260
 - 6.2.3 Dry Spinning Process, 262
 - 6.2.4 Other Fiber Spinning Processes, 263
- 6.3 High-Speed Melt Spinning, 268
 - 6.3.1 Experimental Observations of High-Speed Melt Spinning, 269
 - 6.3.2 Modeling of High-Speed Melt Spinning, 273
 - 6.3.3 Model Prediction and Comparison with Experiment, 284
- 6.4 Spinnability, 294
- 6.5 Summary, 296
 - Problems, 297
 - Notes, 300
 - References, 302

7 Tubular Film Blowing, 305	
7.1 Introduction, 305	
7.2 Processing Characteristics of Tubular Film Blowing, 307	
7.2.1 Kinematics and Stress Field in Tubular Film Blowing, 308	
7.2.2 Tensile Stresses at the Freeze Line and Processing–Property Relationships in Tubular Film Blowing, 311	
7.3 Analysis of Tubular Film Blowing Including Extrudate Swell, 317	
7.3.1 Force Balance Equation, 319	
7.3.2 Energy Balance Equation, 322	
7.3.3 Viscoelastic Constitutive Equation, 323	
7.3.4 Analysis of Tubular Film Blowing in the Extrudate Swell Region, 326	
7.3.5 Analysis of Tubular Film Blowing in the Stretching Region, 329	
7.3.6 Model Predictions and Comparison with Experiment, 330	
7.4 Tubular Film Blowability, 341	
7.5 Summary, 346	
Problems, 348	
Notes, 348	
References, 349	
8 Injection Molding, 351	
8.1 Introduction, 351	
8.2 Flow of Molten Polymer through a Runner, 354	
8.3 Injection Molding of Amorphous Polymers, 358	
8.3.1 Flow Patterns during Mold Filling, 358	
8.3.2 Governing System Equations for Mold Filling of Amorphous Polymers, 363	
8.3.3 Molecular Orientation during Mold Filling and Residual Stress in Injection Molded Articles, 366	
8.4 Injection Molding of Semicrystalline Polymers, 370	
8.4.1 Crystallization during Injection Molding, 370	
8.4.2 Governing System Equations for Injection Molding of Semicrystalline Polymers, 372	
8.4.3 Morphology of Injected-Molded Semicrystalline Polymers, 373	
8.5 Summary, 375	
Notes, 376	
References, 376	
9 Coextrusion, 379	
9.1 Introduction, 379	
9.2 Coextrusion Die Systems, 382	
9.2.1 Feedblock Die System for Flat-Film or Sheet Coextrusion, 382	
9.2.2 Multimanifold Die System for Flat-Film or Sheet Coextrusion, 383	
9.2.3 Feedblock Die	
9.2.4 Rotating-Manifold Coextrusion,	
9.3 Polymer–Polymer Interface, 388	
9.3.1 Polymer–Polymer Conditions, 388	
9.3.2 Polymer–Polymer Field, 400	
9.4 Nonisothermal Coextrusion	
9.5 Summary, 417	
Appendix: Derivation Problems, 419	
Notes, 421	
References, 421	
10 Foam Extrusion, 424	
10.1 Introduction, 424	
10.2 Solubility and Diffusivity	
10.2.1 Solubility of Gases in Polymer, 424	
10.2.2 Diffusivity of Gases in Polymer, 426	
10.3 Bubble Nucleation in Polymer, 428	
10.3.1 Experimental Results, 428	
10.3.2 Theoretical Calculations, 430	
10.4 Foam Extrusion, 468	
10.4.1 Processing–Properties of Foam Extrusion, 468	
10.4.2 Processing–Properties of Extrusion, 482	
10.5 Summary, 487	
Problems, 488	
Notes, 489	
References, 489	
Part II	
Processing of Thermoplastic Polymers	
11 Reaction Injection Molding, 495	
11.1 Introduction, 495	
11.2 Analysis of Reaction	
11.2.1 Main Flow, 496	
11.2.2 Front Flow, 500	

ar Film Blowing, 307
 in Tubular Film Blowing, 308
 eze Line and Processing—Property
 m Blowing, 311
 Including Extrudate Swell, 317
 9
 22
 uation, 323
 owing in the Extrudate
 owing in the Stretching
 parison with Experiment, 330

Runner, 354
 olymers, 358
 Filling, 358
 ns for Mold Filling of Amorphous
 g Mold Filling and Residual Stress
 , 366
 ne Polymers, 370
 on Molding, 370
 s for Injection Molding of
 72
 d Semicrystalline Polymers, 373

lat-Film or Sheet Coextrusion, 382
 or Flat-Film or Sheet

9.2.3 Feedblock Die System for Blown-Film Coextrusion, 384
 9.2.4 Rotating-Mandrel Die System for Blown-Film
 Coextrusion, 386
 9.3 Polymer–Polymer Interdiffusion across the Initially Sharp and Flat
 Interface, 388
 9.3.1 Polymer–Polymer Interdiffusion under Static
 Conditions, 389
 9.3.2 Polymer–Polymer Interdiffusion in the Shear Flow
 Field, 400
 9.4 Nonisothermal Coextrusion, 407
 9.5 Summary, 417
 Appendix: Derivation of Equation (9.36), 418
 Problems, 419
 Notes, 421
 References, 421

10 Foam Extrusion, 424

10.1 Introduction, 424
 10.2 Solubility and Diffusivity of Gases in a Molten Polymer, 425
 10.2.1 Solubility of Gases in a Molten Polymer, 425
 10.2.2 Diffusivity of Gases in a Molten Polymer, 433
 10.3 Bubble Nucleation in Polymeric Liquids, 443
 10.3.1 Experimental Observations of Bubble Nucleation, 446
 10.3.2 Theoretical Considerations of Bubble Nucleation in
 Polymer Solutions, 462
 10.4 Foam Extrusion, 468
 10.4.1 Processing–Property–Morphology Relationships in Profile
 Foam Extrusion, 469
 10.4.2 Processing–Property Relationships in Sheet Foam
 Extrusion, 482
 10.5 Summary, 487
 Problems, 488
 Notes, 489
 References, 489

Part II

Processing of Thermosets

11 Reaction Injection Molding, 495

11.1 Introduction, 495
 11.2 Analysis of Reaction Injection Molding, 497
 11.2.1 Main Flow, 498
 11.2.2 Front Flow, 501

- 11.2.3 Cure Stage, 502
- 11.2.4 Chemorheological Model, 503
- 11.3 Conversion and Temperature Profiles during Mold Filling, 503
- 11.4 Summary, 512
 - Problems, 513
 - Notes, 514
 - References, 515

Remarks on V

12 Pultrusion of Thermoset/Fiber Composites, 517

- 12.1 Introduction, 517
- 12.2 Effect of Mixed Initiators on the Cure Kinetics of Unsaturated Polyester, 519
- 12.3 Cure Kinetics of Unsaturated Polyester/Fiber Composite, 525
- 12.4 Analysis of the Pultrusion of Thermoset/Fiber Composite, 528
 - 12.4.1 General System Equations, 528
 - 12.4.2 System Equations with an Empirical Kinetic Model, 530
 - 12.4.3 System Equations with a Mechanistic Kinetic Model, 531
- 12.5 Conversion and Temperature Profiles in a Pultrusion Die, 531
- 12.6 Summary, 540
 - Problems, 541
 - References, 542

13 Compression Molding of Thermoset/Fiber Composites, 544

- 13.1 Introduction, 544
- 13.2 Thickening Behavior of Unsaturated Polyester, 547
- 13.3 Effect of Pressure on the Curing of Unsaturated Polyester, 552
- 13.4 Analysis of Compression Molding of Unsaturated Polyester/Glass Fiber Composite, 561
- 13.5 Time Evolution of Temperature during Compression Molding of Unsaturated Polyester/Glass Fiber Composite, 564
- 13.6 Summary, 568
- References, 569

Author Index, 571

Subject Index, 578