

List of abbreviations

xix

1 Plant genomes: the organization and expression of plant genes 1**Introduction**DNA, chromatin, and chromosome structure 1Chromatin 4**An introduction to gene structure and gene expression** 6Gene structure and expression in a eukaryotic protein-coding gene 6Translation 10**Regulation of gene expression** 16Chromatin conformation 16Gene transcription 16RNA modification, splicing, turnover, and transport 18Translation 20Post-translational modification 21Localization 21Protein turnover 21Conclusions 22**Implications for plant transformation** 22Examples of promoter elements used to drive transgene expression 26**Protein targeting** 26Heterologous promoters 26Genome size and organization 27***Arabidopsis* and the new technologies** 28Genome-sequencing projects—technology, findings, and applications 28Biotechnological implications of the AGI 31Crop plant genome sequencing 31**Summary** 33**Further reading** 34

2 Plant tissue culture	37
Introduction	37
Plant tissue culture	37
Plasticity and totipotency	37
The culture environment	38
Plant cell culture media	39
Plant growth regulators	41
Culture types	44
Callus	44
Cell-suspension cultures	45
Protoplasts	46
Root cultures	46
Shoot tip and meristem culture	46
Embryo culture	46
Microspore culture	47
Plant regeneration	48
Somatic embryogenesis	48
CASE STUDY 2.1 Cereal regeneration via somatic embryogenesis from immature or mature embryos	50
Organogenesis	51
Integration of plant tissue culture into plant transformation protocols	51
Summary	52
Further reading	53
3 Techniques for plant transformation	54
Introduction	54
Agrobacterium-mediated gene transfer	54
The biology of Agrobacterium	54
The Ti plasmid	56
Ti-plasmid features	56
The process of T-DNA transfer and integration	59
Step 1. Signal recognition by Agrobacterium	60
Step 2. Attachment to plant cells	60
Step 3. Induction of vir genes	60
Step 4. T-strand production	60
Step 5. Transfer of T-DNA out of the bacterial cell	60
Step 6. Transfer of the T-DNA and Vir proteins into the plant cell and nuclear localization	60

Practical applications of <i>Agrobacterium</i> -mediated plant transformation	61
CASE STUDY 3.1 <i>Agrobacterium</i> -mediated transformation of tobacco	62
Transformation	64
Direct gene-transfer methods	66
Particle bombardment	67
CASE STUDY 3.2 Biolistic transformation of rice	68
Polyethylene glycol-mediated transformation	72
Electroporation	73
Silicon carbide fibres: WHISKERS™	73
Summary	74
Further reading	74

4 Vectors for plant transformation © 2002 Blackwell Science Ltd, *Plant Transformation*, 2e **77**

Introduction	77
Desirable features of any plasmid vector	77
Development of plant transformation vectors	79
Basic features of vectors for plant transformation	79
Promoters and terminators	79
Selectable markers	86
Reporter genes	87
Origins of replication	91
Co-integrative and binary vectors	91
Families of binary vectors	91
Optimization	92
Arrangement of genes in the vector	95
Transgene copy number	98
Transgene position	98
Transgene features	98
Clean-gene technology	100
Summary	100
Further reading	101

5 The genetic manipulation of herbicide tolerance **105**

Introduction	105
The use of herbicides in modern agriculture	106
What types of compounds are herbicides?	107

Strategies for engineering herbicide tolerance	111
CASE STUDY 5.1 Glyphosate tolerance	111
CASE STUDY 5.2 Phosphinothricin	121
Prospects for plant detoxification systems	123
Commercialization of herbicide-tolerant plants to date	124
CASE STUDY 5.3 Engineering imidazolinone tolerance by targeted modification of endogenous plant genes	126
The environmental impact of herbicide-tolerant crops	127
The development of super-weeds	129
Summary	130
Further reading	131
<hr/>	
6 The genetic manipulation of pest resistance	133
<hr/>	
Introduction	133
The nature and scale of insect pest damage to crops	134
GM strategies for insect resistance: the <i>Bacillus thuringiensis</i> approach	134
The use of <i>B. thuringiensis</i> as a biopesticide	138
<i>Bt</i> -based genetic modification of plants	138
CASE STUDY 6.1 Resistance of <i>Bt</i> maize to the European corn borer and other pests	140
The problem of insect resistance to <i>Bt</i>	141
The environmental impact of <i>Bt</i> crops	145
The Copy Nature strategy	146
CASE STUDY 6.2 Cowpea trypsin inhibitor	149
Insect-resistant crops and food safety	153
Summary	153
Further reading	153
<hr/>	
7 Plant disease resistance	156
<hr/>	
Introduction	156
Plant-pathogen interactions	157
Prokaryotes	158
Fungi and water moulds	158
Viruses	160
Existing approaches to combating disease	160

Natural disease-resistance pathways: overlap between pests and diseases	162
Anatomical defences	162
Pre-existing protein and chemical protection	162
Inducible systems	163
Systemic responses	170
Biotechnological approaches to disease resistance	172
Protection against pathogens	173
Antimicrobial proteins	174
Transgenic crops for food safety	176
Induction of HR and SAR in transgenic plants	177
CASE STUDY 7.1 The BASF potato	178
Developments for the future	179
Other transgenic approaches	179
Future prospects for breeding	179
CASE STUDY 7.2 <i>Xanthomonas</i> spp.	180
Summary	181
Further reading	182

8 Reducing the effects of viral disease	184
Summary	184
Introduction	184
Types of plant virus	184
RNA viruses	186
Entry and replication: points of inhibition	188
How has the agricultural community dealt with viruses?	189
CASE STUDY 8.1 Developments in the sugar beet industry	190
The transgenic approach: PDR	192
Interactions involving viral proteins	192
CASE STUDY 8.2 <i>Arabis</i> mosaic virus	194
RNA effects	197
Some non-PDR approaches	202
CASE STUDY 8.3 DNA viruses	203
What has been commercialized in Western agriculture?	204
Yellow squash and zucchini	204
Papaya	205
Potato	205
Risk	206
Summary	208
Further reading	209

9 Strategies for engineering stress tolerance	212
Autotrophic metabolism	
Introduction	212
The nature of abiotic stress	214
The nature of water-deficit stress	214
Different abiotic stresses create a water deficit	215
CASE STUDY 9.1 Glycine betaine production	218
Targeted approaches to manipulating tolerance to specific water-deficit stresses	222
Alternative approaches to salt stress	222
CASE STUDY 9.2 Na^+/H^+ antiporters improve salt tolerance in transgenic plants	223
Alternative approaches to cold stress	224
CASE STUDY 9.3 The COR regulon	224
Tolerance to heat stress	228
Secondary effects of abiotic stress: the production of ROS	229
Strategy 1: Expression of enzymes involved in scavenging ROS	232
Strategy 2: Production of antioxidants	234
Summary	234
Further reading	234
Cultivation	
10 The improvement of crop yield and quality	237
Enhanced yield	
Introduction	237
The genetic manipulation of fruit ripening	238
CASE STUDY 10.1 The genetic manipulation of fruit softening	240
CASE STUDY 10.2 The genetic modification of ethylene biosynthesis	243
CASE STUDY 10.3 Modification of colour	247
CASE STUDY 10.4 Golden Rice	251
Engineering plant protein composition for improved nutrition	256
The genetic manipulation of crop yield by enhancement of photosynthesis	258
Manipulation of light harvesting and the assimilate distribution: phytochromes	258
Direct manipulation of photosynthesis: enhancement of dark reactions	261
Summary	263
Further reading	263

11 Molecular farming 267

Introduction	267
Carbohydrates and lipids	267
Carbohydrate production	267
CASE STUDY 11.1 Starch	268
CASE STUDY 11.2 Polyfructans	272
Metabolic engineering of lipids	276
CASE STUDY 11.3 Bioplastics	282
Molecular farming of proteins	285
Production systems	286
CASE STUDY 11.4 The oleosin system: hirudin and insulin production	289
Medically related proteins	296
CASE STUDY 11.5 Custom-made antibodies	300
CASE STUDY 11.6 Edible vaccines	304
Economic and regulatory considerations for molecular farming	307
Summary	311
Further reading	312

12 Science and society: public acceptance of genetically modified crops 316

Introduction	316
Public concerns	316
The current state of transgenic crops	318
Who has benefited from these first-generation GM crops?	318
What will drive the development of the future generations of GM crops?	322
Concerns about GM crops	323
Antibiotic-resistance genes	323
Herbicide resistance and super-weeds	324
Gene containment	325
Big business	328
Food safety	330
The regulation of GM crops and products	331
The EU	331
The USA	338
Summary	340
Further reading	340

13 Beyond genetically modified crops	343
Introduction	343
‘Greener’ genetic engineering	343
Genetic manipulation of complex agronomic traits	345
Identification of genes associated with desirable traits	348
Genetic mapping	348
Quantitative trait loci	352
Investigating gene function by reverse genetics	354
Insertional mutagenesis	354
TILLING	355
Understanding gene function within the genomic context: functional genomics	357
Transcriptomics	357
Proteomics	360
Interactomics	362
Metabolomics	362
Systems biology	362
Summary	363
Further reading	363
Index	367