

Contents

Preface	v	2.2 DNA Cloning	43
A Note to the Reader	vii	2.2.1 Cloning vectors and the way they are used	44
Contents in Brief	xi	Vectors based on <i>E. coli</i> plasmids	45
Abbreviations	xix	Technical Note 2.3: DNA purification	46
PART 1 Studying Genomes			
Chapter 1 Genomes, Transcriptomes, and Proteomes	1	2.2 DNA Cloning	43
1.1 DNA	5	2.2.1 Cloning vectors and the way they are used	44
1.1.1 Genes are made of DNA	5	Vectors based on <i>E. coli</i> plasmids	45
1.1.2 The structure of DNA	8	Technical Note 2.3: DNA purification	46
Nucleotides and polynucleotides	8	Cloning vectors based on <i>E. coli</i> bacteriophage genomes	48
The evidence that led to the double helix	9	Vectors for longer pieces of DNA	51
The key features of the double helix	11	Cloning in organisms other than <i>E. coli</i>	53
The double helix has structural flexibility	12		
1.2 RNA and the Transcriptome	14	2.3 The Polymerase Chain Reaction (PCR)	55
1.2.1 The structure of RNA	15	2.3.1 Carrying out a PCR	55
1.2.2 The RNA content of the cell	15	Technical Note 2.4: Working with a clone library	56
1.2.3 Processing of precursor RNA	17	2.3.2 The applications of PCR	57
1.2.4 The transcriptome	17	Study Aids	59
1.3 Proteins and the Proteome	18	Chapter 3 Mapping Genomes	63
1.3.1 Protein structure	18	3.1 Genetic and Physical Maps	65
The four levels of protein structure	18	3.2 Genetic Mapping	65
Amino acid diversity underlies protein diversity	19	3.2.1 Genes were the first markers to be used	66
1.3.2 The proteome	20	3.2.2 DNA markers for genetic mapping	67
The link between the transcriptome and the proteome	21	Restriction fragment length polymorphisms	67
The genetic code is not universal	22	Simple sequence length polymorphisms	68
The link between the proteome and the biochemistry of the cell	23	Single nucleotide polymorphisms	69
Technical Note 3.1: DNA microarrays and chips		Technical Note 3.1: DNA microarrays and chips	71
Study Aids	26	3.2.3 Linkage analysis is the basis of genetic mapping	72
		The principles of inheritance and the discovery of linkage	72
Chapter 2 Studying DNA	31	Partial linkage is explained by the behavior of chromosomes during meiosis	74
2.1 Enzymes for DNA Manipulation	33	From partial linkage to genetic mapping	77
2.1.1 DNA polymerases	34	3.2.4 Linkage analysis with different types of organism	77
Technical Note 2.1: DNA labeling	34	Linkage analysis when planned breeding experiments are possible	78
The mode of action of a template-dependent polymerase	35	Gene mapping by human pedigree analysis	80
The types of DNA polymerases used in research	36	Genetic mapping in bacteria	81
2.1.2 Nucleases	37	3.3 Physical Mapping	82
Restriction endonucleases enable the DNA molecules to be cut at defined positions	38	3.3.1 Restriction mapping	84
Technical Note 2.2: Agarose gel electrophoresis	40	The basic methodology for restriction mapping	84
Examining the results of a restriction digest	41	The scale of restriction mapping is limited by the sizes of the restriction fragments	86
2.1.3 DNA ligases	42	Direct examination of DNA molecules for restriction sites	87
2.1.4 End-modification enzymes	42	3.3.2 Fluorescent <i>in situ</i> hybridization	89
		<i>In situ</i> hybridization with radioactive or fluorescent probes	89
		FISH in action	90
		3.3.3 Sequence tagged site mapping	91
		Any unique DNA sequence can be used as an STS	92

Fragments of DNA for STS mapping	93	Hybridization tests can determine if a fragment contains transcribed sequences	141
A clone library can also be used as the mapping reagent for STS analysis	94	Technical Note 5.1: Techniques for studying RNA	142
Study Aids	97	cDNA sequencing enables genes to be mapped within DNA fragments	142
Chapter 4 Sequencing Genomes	103	Methods are available for precise mapping of the ends of transcripts	143
4.1 The Methodology for DNA Sequencing	104	Exon–intron boundaries can also be located with precision	144
Technical Note 4.1: Polyacrylamide gel electrophoresis	104		
4.1.1 Chain termination DNA sequencing	105	5.2 Determining the Functions of Individual Genes	144
Chain termination sequencing in outline	105	Computer analysis of gene function	145
Chain termination sequencing requires a single-stranded DNA template	107	Homology reflects evolutionary relationships	145
DNA polymerases for chain termination sequencing	108	Homology analysis can provide information on the function of an entire gene or of segments within it	145
The primer determines the region of the template DNA that will be sequenced	108	Using homology searching to assign functions to human disease genes	147
Thermal cycle sequencing offers an alternative to the traditional methodology	109	5.2.2 Assigning gene function by experimental analysis	148
4.1.2 Alternative methods for DNA sequencing	109	Functional analysis by gene inactivation	149
Chemical degradation sequencing	110	Individual genes can be inactivated by homologous recombination	149
Pyrosequencing is used for rapid determination of very short sequences	111	Gene inactivation without homologous recombination	150
4.2 Assembly of a Contiguous DNA Sequence	112	Gene overexpression can also be used to assess function	151
4.2.1 Sequence assembly by the shotgun method	112	The phenotypic effect of gene inactivation or overexpression may be difficult to discern	152
The potential of the shotgun method was proven by the <i>Haemophilus influenzae</i> sequence	113	5.2.3 More detailed studies of the activity of a protein coded by an unknown gene	154
4.2.2 Sequence assembly by the clone contig method	115	Directed mutagenesis can be used to probe gene function in detail	154
Clone contigs can be built up by chromosome walking, but the method is laborious	115	Reporter genes and immunocytochemistry can be used to locate where and when genes are expressed	155
More rapid methods for clone contig assembly	117	Technical Note 5.2: Site-directed mutagenesis	156
4.2.3 Whole-genome shotgun sequencing	119		
Key features of whole-genome shotgun sequencing	119		
4.3 The Human Genome Projects	121	5.3 Case Study: Annotation of the <i>Saccharomyces cerevisiae</i> Genome Sequence	158
4.3.1 The mapping phase of the Human Genome Project	121	Annotation of the yeast genome sequence	158
4.3.2 Sequencing the human genome	122	Assigning functions to yeast genes	159
4.3.3 The future of the human genome projects	123	Study Aids	162
Study Aids	126	Chapter 6 Understanding How a Genome Functions	167
Chapter 5 Understanding a Genome Sequence	133	6.1 Studying the Transcriptome	168
5.1 Locating the Genes in a Genome Sequence	134	6.1.1 Studying a transcriptome by sequence analysis	168
5.1.1 Gene location by sequence inspection	134	6.1.2 Studying a transcriptome by microarray or chip analysis	169
The coding regions of genes are open reading frames	134	Using a microarray or chip to study one or more transcriptomes	169
Simple ORF scans are less effective with DNA of higher eukaryotes	135	Studies of the yeast transcriptome	172
Locating genes for functional RNA	137	The human transcriptome	173
Homology searches and comparative genomics give an extra dimension to sequence inspection	138		
Automatic annotation of genome sequences	140	6.2 Studying the Proteome	175
5.1.2 Experimental techniques for gene location	141	Protein profiling – methodology for identifying the proteins in a proteome	175

6.2.2	Separating the proteins in a proteome Identifying the proteins in a proteome Identifying proteins that interact with one another Identifying pairs of interacting proteins by phage display and two-hybrid studies Identifying the components of multiprotein complexes Identifying proteins with functional interactions Protein interaction maps	175 177 179 179 181 182 183	The traditional view of the prokaryotic chromosome Some bacteria have linear or multipartite genomes	226 228
6.3	Beyond the Proteome	184	8.2 The Genetic Features of Prokaryotic Genomes	230
6.3.1	The metabolome	185	8.2.1 How are the genes organized in a prokaryotic genome? Gene organization in the <i>E. coli</i> genome	230 231
6.3.2	Understanding biological systems	186	8.2.2 Operons are characteristic features of prokaryotic genomes	232
	Study Aids	189	8.2.3 How many genes are there and what are their functions? Prokaryotic genomes and the species concept	234 236
	PART 2 Genome Anatomies	195	8.3 Eukaryotic Organelle Genomes	238
	Chapter 7 Eukaryotic Nuclear Genomes	197	8.3.1 The origins of organelle genomes	238
7.1	Nuclear Genomes are Contained in Chromosomes	198	8.3.2 Physical features of organelle genomes	239
7.1.1	Packaging of DNA into chromosomes	198	8.3.3 The genetic content of organelle genomes	239
7.1.2	The special features of metaphase chromosomes DNA–protein interactions in centromeres and telomeres	199 202	Study Aids	244
7.2	The Genetic Features of Eukaryotic Nuclear Genomes	203	Chapter 9 Virus Genomes and Mobile Genetic Elements	249
7.2.1	Where are the genes in a nuclear genome? Technical Note 7.1: Ultracentrifugation techniques	204 205	9.1 The Genomes of Bacteriophages and Eukaryotic Viruses	250
7.2.2	How are the genes organized in a nuclear genome? The genes make up only a small part of the human genome The yeast genome is very compact Gene organization in other eukaryotes	205 206 207 210	9.1.1 Bacteriophage genomes Bacteriophage genomes have diverse structures and organizations Replication strategies for bacteriophage genomes	250 251
7.2.3	How many genes are there and what are their functions? The human gene catalog Gene catalogs reveal the distinctive features of different organisms Families of genes Pseudogenes and other evolutionary relics	211 212 212 212 215 216	9.1.2 The genomes of eukaryotic viruses Structures and replication strategies for eukaryotic viral genomes Genomes at the edge of life	253 253 254
7.2.4	The repetitive DNA content of eukaryotic nuclear genomes Tandemly repeated DNA is found at centromeres and elsewhere in eukaryotic chromosomes Minisatellites and microsatellites Interspersed repeats	216 217 217 218	9.2 Mobile Genetic Elements	256
	Study Aids	220	9.2.1 Transposition via an RNA intermediate RNA transposons with long terminal repeats are related to viral retroelements RNA transposons that lack LTRs	257 257 259
	Chapter 8 Genomes of Prokaryotes and Eukaryotic Organelles	225	9.2.2 DNA transposons DNA transposons are common in prokaryotic genomes DNA transposons are less common in eukaryotic genomes	259 260 261
8.1	The Physical Features of Prokaryotic Genomes	226	Study Aids	264
8.1.1	The chromosomes of prokaryotes	226	PART 3 How Genomes Function	269
	Chapter 10 Accessing the Genome	225	10.1 Inside the Nucleus	271
			10.1.1 The internal architecture of the eukaryotic nucleus The nucleus has a highly ordered internal structure	272 273
			Technical Note 10.1: Fluorescence recovery after photobleaching (FRAP)	274

10.1.2	Chromatin domains	Each chromosome has its own territory within the nucleus	274	Bacterial RNA polymerases bind to promotor sequences	309
		Functional domains are defined by insulators	275	Eukaryotic promoters are more complex	310
		Some functional domains contain locus control regions	276	11.2.3 Assembly of the transcription initiation complex	312
			278	Transcription initiation in <i>E. coli</i>	312
10.2	Chromatin Modifications and Genome Expression		279	Transcription initiation with RNA polymerase II	312
10.2.1	Chemical modification of histones	280		Transcription initiation with RNA polymerases I and III	315
	Acetylation of histones influences many nuclear activities including genome expression	280			
	Histone deacetylation represses active regions of the genome	282	11.3 Regulation of Transcription Initiation	315	
	Acetylation is not the only type of histone modification	282	11.3.1 Strategies for controlling transcription initiation in bacteria	316	
10.2.2	The influence of nucleosome remodeling on genome expression	284	Promotor structure determines the basal level of transcription initiation	316	
10.3	DNA Modification and Genome Expression	285	Regulatory control over bacterial transcription initiation	317	
10.3.1	Genome silencing by DNA methylation	285	11.3.2 Control of transcription initiation in eukaryotes	320	
	DNA methyltransferases and the repression of genome activity	286	Eukaryotic promoters contain regulatory modules	321	
	Methylation is involved in genomic imprinting and X inactivation	287	Activators and coactivators of eukaryotic transcription initiation	322	
			The mediator forms the contact between an activator and the RNA polymerase II preinitiation complex	323	
			Repressors of eukaryotic transcription initiation	324	
			Controlling the activities of activators and repressors	325	
	Study Aids	290			
	Chapter 11 Assembly of the Transcription Initiation Complex	295	Study Aids	327	
11.1	DNA-binding Proteins and Their Attachment Sites	297	Chapter 12 Synthesis and Processing of RNA	333	
11.1.1	The special features of DNA-binding proteins	297	12.1 Synthesis and Processing of Bacterial RNAs	334	
	The helix-turn-helix motif is present in prokaryotic and eukaryotic proteins	297	12.1.1 Synthesis of bacterial transcripts	335	
	Technical Note 11.1: X-ray crystallography and nuclear magnetic resonance spectroscopy	298	Elongation of a transcript by the bacterial RNA polymerase	335	
	Zinc fingers are common in eukaryotic proteins	301	Termination of a bacterial transcript	337	
	Other nucleic acid-binding motifs	301	12.1.2 Control over the choice between elongation and termination	338	
11.1.2	Locating the positions of DNA-binding sites in a genome	302	Antitermination results in termination signals being ignored	338	
	Gel retardation identifies DNA fragments that bind to proteins	303	Attenuation results in premature termination	340	
	Protection assays pinpoint binding sites with greater accuracy	303	Transcript cleavage proteins can prevent stalling of a backtracked polymerase	341	
	Modification interference identifies nucleotides central to protein binding	304	12.1.3 Processing of bacterial RNAs	343	
11.1.3	The interaction between DNA and its binding proteins	305	Cutting events release mature rRNAs and tRNAs from their precursor molecules	343	
	Direct readout of the nucleotide sequence	306	Nucleotide modifications broaden the chemical properties of tRNAs and rRNAs	346	
	The nucleotide sequence has a number of indirect effects on helix structure	306	12.1.4 Degradation of bacterial RNAs	346	
	Contacts between DNA and proteins	307	Bacterial mRNAs are degraded in the 3'→5' direction	347	
11.2	DNA-Protein Interactions During Transcription Initiation	308	12.2 Synthesis and Processing of Eukaryotic RNA	348	
11.2.1	RNA polymerases	308	12.2.1 Synthesis of eukaryotic mRNAs by RNA polymerase II	348	
11.2.2	Recognition sequences for transcription initiation	309	Capping of RNA polymerase II transcripts occurs immediately after initiation	348	
			Elongation of eukaryotic mRNAs	350	

Termination of synthesis of most mRNAs is combined with polyadenylation	351	Regulation of translation initiation	399
Regulation of mRNA synthesis in eukaryotes	353	13.2.3 The elongation phase of translation	400
12.2.2 Removal of introns from nuclear pre-mRNA	354	Elongation in bacteria and eukaryotes	400
Conserved sequence motifs indicate the key sites in GU-AG introns	355	Peptidyl transferase is a ribozyme	402
Outline of the splicing pathway for GU-AG introns	356	Frameshifting and other unusual events during elongation	403
snRNAs and their associated proteins are the central components of the splicing apparatus	357	13.2.4 Termination of translation	405
Alternative splicing is common in many eukaryotes	359	13.2.5 Translation in the archaea	405
Trans-splicing links exons from different transcription units	362	13.3 Posttranslational Processing of Proteins	406
AU-AC introns are similar to GU-AG introns but require a different splicing apparatus	363	13.3.1 Protein folding	407
12.2.3 Synthesis of functional RNAs in eukaryotes	363	Not all proteins fold spontaneously in the test tube	407
12.2.4 Splicing of eukaryotic pre-rRNA and pre-tRNA	364	In cells, folding is aided by molecular chaperones	409
Introns in eukaryotic pre-rRNAs are autocatalytic	364	13.3.2 Processing by proteolytic cleavage	410
Removal of introns from eukaryotic pre-tRNAs	365	Cleavage of the ends of polypeptides	410
Other types of intron	367	Proteolytic processing of polyproteins	411
12.2.5 Chemical modification of eukaryotic RNAs	368	13.3.3 Processing by chemical modification	412
Small nucleolar RNAs act as guides for chemical modification of eukaryotic rRNAs	369	13.3.4 Inteins	413
RNA editing	369	13.4 Protein Degradation	414
12.2.6 Degradation of eukaryotic RNAs	371	Study Aids	417
Eukaryotes have diverse mechanisms for RNA degradation	371	Chapter 14 Regulation of Genome Activity	423
RNA silencing was first identified as a means of destroying invading viral RNA	373	14.1 Transient Changes in Genome Activity	425
MicroRNAs regulate genome expression by causing specific target mRNAs to be degraded	374	14.1.1 Signal transmission by import of the extracellular signaling compound	427
12.2.7 Transport of RNA within the eukaryotic cell	375	Lactoferrin is an extracellular signaling protein which acts as a transcription activator	428
Study Aids	377	Some imported signaling compounds directly influence the activity of preexisting regulatory proteins	428
Chapter 13 Synthesis and Processing of the Proteome	385	Some imported signaling compounds influence genome activity indirectly	429
13.1 The Role of tRNA in Protein Synthesis	386	14.1.2 Signal transmission mediated by cell surface receptors	432
13.1.1 Aminoacylation: the attachment of amino acids to tRNAs	386	Signal transduction with one step between receptor and genome	433
All tRNAs have a similar structure	386	Signal transduction with many steps between receptor and genome	434
Aminoacyl-tRNA synthetases attach amino acids to tRNAs	388	Signal transduction via second messengers	435
13.1.2 Codon–anticodon interactions: the attachment of tRNAs to mRNA	390	Unraveling a signal transduction pathway	436
13.2 The Role of the Ribosome in Protein Synthesis	392	14.2 Permanent and Semipermanent Changes in Genome Activity	437
13.2.1 Ribosome structure	393	14.2.1 Genome rearrangements	438
Ultracentrifugation was used to measure the sizes of ribosomes and their components	393	Yeast mating types are determined by gene conversion events	438
Probing the fine structure of the ribosome	393	Genome rearrangements are responsible for immunoglobulin and T-cell receptor diversities	439
13.2.2 Initiation of translation	395	14.2.2 Changes in chromatin structure	441
Initiation in bacteria requires an internal ribosome binding site	395	14.2.3 Genome regulation by feedback loops	443
Initiation in eukaryotes is mediated by the cap structure and poly(A) tail	397	14.3 Regulation of Genome Activity During Development	443
Initiation of eukaryotic translation without scanning	398	14.3.1 The lysogenic cycle of bacteriophage λ	444

14.3.2	Bacteriophage λ must make a choice between lysis and lysogeny	444	15.2.4	Maintaining the ends of a linear DNA molecule	489
	Sporulation in <i>Bacillus</i>	446		Telomeric DNA is synthesized by the telomerase enzyme	489
	Sporulation involves coordinated activities in two distinct cell types	446		Telomere length is implicated in cell senescence and cancer	491
	Special σ subunits control genome activity during sporulation	446		Telomeres in <i>Drosophila</i>	492
14.3.3	Vulva development in <i>Caenorhabditis elegans</i>	449	15.3	Regulation of Eukaryotic Genome Replication	493
	<i>C. elegans</i> is a model for multicellular eukaryotic development	449	15.3.1	Coordination of genome replication and cell division	493
	Determination of cell fate during development of the <i>C. elegans</i> vulva	449		Establishment of the prereplication complex enables genome replication to commence	493
14.3.4	Development in <i>Drosophila melanogaster</i>	451		Regulation of pre-RC assembly	494
	Maternal genes establish protein gradients in the <i>Drosophila</i> embryo	452	15.3.2	Control within S phase	495
	A cascade of gene expression converts positional information into a segmentation pattern	453		Early and late replication origins	495
	Segment identity is determined by homeotic selector genes	454		Checkpoints within S phase	497
	Homeotic selector genes are universal features of higher eukaryotic development	455		Study Aids	499
	Homeotic genes also underlie plant development	456		Chapter 16 Mutations and DNA Repair	505
	Study Aids	459	16.1	Mutations	506
			16.1.1	The causes of mutations	506
				Technical Note 16.1: Mutation detection	508
				Errors in replication are a source of point mutations	509
				Replication errors can also lead to insertion and deletion mutations	510
				Mutations are also caused by chemical and physical mutagens	512
			16.1.2	The effects of mutations	515
				The effects of mutations on genomes	516
				The effects of mutations on multicellular organisms	518
				The effects of mutations on microorganisms	519
			16.1.3	Hypermutation and the possibility of programmed mutations	521
				Hypermutation results from abnormal DNA repair processes	521
				Programmed mutations appear to support the Lamarckian theory of evolution	522
			16.2	DNA Repair	524
			16.2.1	Direct repair systems fill in nicks and correct some types of nucleotide modification	525
			16.2.2	Excision repair	525
				Base excision repairs many types of damaged nucleotide	526
				Nucleotide excision repair is used to correct more extensive types of damage	527
			16.2.3	Mismatch repair: correcting errors of replication	529
			16.2.4	Repair of DNA breaks	530
			16.2.5	Bypassing DNA damage during genome replication	531
				The SOS response is an emergency measure for coping with a damaged genome	531
			16.2.6	Defects in DNA repair underlie human diseases, including cancers	532
				Study Aids	535
	PART 4 How Genomes Replicate and Evolve	465			
	Chapter 15 Genome Replication	467			
15.1	The Topological Problem	468			
15.1.1	Experimental proof for the Watson–Crick scheme for DNA replication	469			
	The Meselson–Stahl experiment	470			
15.1.2	DNA topoisomerases provide a solution to the topological problem	472			
15.1.3	Variations on the semiconservative theme	473			
15.2	The Replication Process	475			
15.2.1	Initiation of genome replication	475			
	Initiation at the <i>E. coli</i> origin of replication	475			
	Origins of replication in yeast have been clearly defined	476			
	Replication origins in higher eukaryotes have been less easy to identify	477			
15.2.2	The elongation phase of replication	478			
	The DNA polymerases of bacteria and eukaryotes	479			
	Discontinuous strand synthesis and the priming problem	481			
	Events at the bacterial replication fork	482			
	The eukaryotic replication fork: variations on the bacterial theme	484			
	Genome replication in the archaea	486			
15.2.3	Termination of replication	487			
	Replication of the <i>E. coli</i> genome terminates within a defined region	487			
	Little is known about termination of replication in eukaryotes	488			

Chapter 17 Recombination	541	18.4 The Human Genome: the Last Five Million Years	586
17.1 Homologous Recombination	543	Study Aids	589
17.1.1 Models for homologous recombination	543		
The Holliday and Meselson–Radding models for homologous recombination	543		
The double-strand break model for homologous recombination	545		
17.1.2 The biochemistry of homologous recombination	546		
The RecBCD pathway of <i>Escherichia coli</i>	546		
Other homologous recombination pathways in <i>E. coli</i>	547		
Homologous recombination pathways in eukaryotes	548		
17.1.3 Homologous recombination and DNA repair	549		
17.2 Site-Specific Recombination	550		
17.2.1 Integration of λ DNA into the <i>E. coli</i> genome	550		
17.2.2 Site-specific recombination is an aid in genetic engineering	551		
17.3 Transposition	552		
17.3.1 Replicative and conservative transposition of DNA transposons	553		
17.3.2 Transposition of retroelements	553		
17.3.3 How do cells minimize the harmful effect of transposition?	556		
Study Aids	558		
Chapter 18 How Genomes Evolve	563		
18.1 Genomes: the First Ten Billion Years	564		
18.1.1 The origins of genomes	565		
The first biochemical systems were centered on RNA	565		
The first DNA genomes	566		
How unique is life?	568		
18.2 Acquisition of New Genes	568		
18.2.1 Acquisition of new genes by duplication events	570		
Genome sequences provide extensive evidence of past gene duplications	571		
A variety of processes could result in gene duplication	573		
Whole genome duplication is also possible	574		
Analysis of modern genomes provides evidence for past genome duplications	576		
Smaller duplications can also be identified in the human genome and other genomes	577		
Genome evolution also involves rearrangement of existing genes	578		
18.2.2 Acquisition of new genes from other species	581		
18.3 Noncoding DNA and Genome Evolution	582		
18.3.1 Transposable elements and genome evolution	583		
18.3.2 The origins of introns	583		
“Introns early” and “introns late”: two competing hypotheses	584		
The current evidence disproves neither hypothesis	585		
18.4 The Human Genome: the Last Five Million Years	586		
Study Aids	589		
Chapter 19 Molecular Phylogenetics	595		
19.1 From Classification to Molecular Phylogenetics	596		
19.1.1 The origin of molecular phylogenetics	596		
Phenetics and cladistics require large datasets	596		
Large datasets can be obtained by studying molecular characters	597		
19.2 The Reconstruction of DNA-based Phylogenetic Trees	599		
19.2.1 The key features of DNA-based phylogenetic trees	599		
Gene trees are not the same as species trees	600		
19.2.2 Tree reconstruction	602		
Sequence alignment is the essential preliminary to tree reconstruction	602		
Converting alignment data into a phylogenetic tree	603		
Technical Note 19.1: Phylogenetic analysis	604		
Assessing the accuracy of a reconstructed tree	606		
Molecular clocks enable the time of divergence of ancestral sequences to be estimated	606		
Standard tree reconstruction is not appropriate for all DNA sequence datasets	607		
19.3 Applications of Molecular Phylogenetics	609		
19.3.1 Examples of the use of phylogenetic trees	609		
DNA phylogenetics has clarified the evolutionary relationships between humans and other primates	609		
The origins of AIDS	610		
19.3.2 Molecular phylogenetics as a tool in the study of human prehistory	611		
Studying genes in populations	611		
The origins of modern humans – out of Africa or not?	612		
Neandertals are not the ancestors of modern Europeans	614		
The patterns of more recent migrations into Europe are also controversial	616		
Prehistoric human migrations into the New World	617		
Study Aids	621		
Appendix	627		
Glossary	653		
Index	683		