

Contents

Preface	iii
Introduction	iv
Contributors	vii
1. Melt-Viscosity Characterization and Its Application to Injection Molding	1
<i>Cornelius A. Hieber</i>	
I. Introduction	1
II. Melt-Viscosity Characterization	2
A. Viscosity Fits Using Cross-Arrhenius Model	2
B. Master Plots	8
C. Incorporating Pressure Dependence	15
III. Simulation of Cavity Filling	23
A. Simple Geometries	23
B. Composites of Simple Geometries	36
C. Thin Cavities of Arbitrary Planar Geometry	44
IV. Post-Filling Stage	61
Appendices	
A. Dependence of n upon M_w/M_n	78
B. Dependence of τ^* upon M_w/M_n	79
C. Dependence of T_b on Temperature Level	80
D. Dependence of n_0 upon M_w	85
E. Relationship between τ^* and J_e^0	86
F. Juncture-Pressure Correlation	96

G. Melt-Fracture Correlation	101
H. Comparison of Cross and Carreau Models	104
I. Viscous-Heating Effects in Capillary Rheometry	107
J. Fitting Capillary-Rheometer Data Accounting for Pressure Dependence and Viscous Heating	111
K. "Fountain" Effect	124
References	129
 2. Flow of Polymeric Melts in Junture Regions of Injection Molding	 137
<i>Avraam I. Isayev and Ram K. Upadhyay</i>	
I. Introduction	137
II. Experimental Results for Two-Dimensional Flow of Polymers	138
A. Flow-Through Channels with Contraction or Expansion	138
B. Entry and Exit Flow Effects	152
III. Modeling Two-Dimensional Flow	176
A. General	176
B. Generalized Newtonian Fluid Models	179
C. Viscoelastic Models	186
IV. Predicted Results Compared with Experimental Results	206
V. Implications for Juncture-Type Flow in Mold Design	218
References	221
 3. Orientation, Residual Stresses, and Volumetric Effects in Injection Molding	 227
<i>Avraam I. Isayev</i>	
I. Introduction	227
II. Development of Orientation in Injection Molding	228
A. Experimental Techniques	228
B. Modeling Orientation in Terms of Birefringence	233
C. Thermal- and Flow-Induced Birefringence	242
D. Orientation in Molded Parts of Amorphous Polymers	246
III. Development of Residual Stress in Injection Molding	257
A. Experimental Techniques for Residual-Stress Measurements	257
B. Thermal- and Flow-Induced Stresses	264
C. Modeling of Residual Stresses	273

D. Effects of Processing Conditions on Residual Stresses	285
E. Comparison of Flow, Thermal, and Residual Stresses in Molded Parts	294
IV. Development of Density and Shrinkage in Injection Molding	296
V. Concluding Remarks	319
References	322
4. Thermoset Injection Molding	329
<i>Musa R. Kamal and Michael E. Ryan</i>	
I. Introduction	329
II. Thermoset Resin Characterization	330
A. Kinetic Characterization	330
B. Rheological Characterization	344
C. Thermal Properties	350
D. Effect of Fillers on Kinetics and Rheological and Thermal Properties	357
III. Thermoset Injection-Molding Simulation	359
A. Injection-Molding Systems: Equipment and Resins	359
B. Mathematical Modeling and Computer Simulation	363
IV. Conclusions	372
References	372
5. Rheological Behavior and Molding Technology of Elastomers	377
<i>Henry S.-Y. Hsich and Richard J. Ambrose</i>	
I. Introduction	377
II. Relaxation Spectra of Elastomers	379
A. The Rubbery State	381
B. A Hybrid Model for Mechanical Spectra of Filled and Unfilled Elastomers	381
C. Composite Mechanics of Filled Elastomers	389
III. Flow Rheology of Elastomers	392
A. Viscosity Theory of Polymers	393
B. Viscosity Studies of Elastomers and Shear-Flow-Induced Structural Changes of Molecules	395
C. Effects of Filler on the Viscosity of Elastomers	398
IV. Chemorheology of Elastomers	402
A. Chemical Reactions of Cure	403
B. Kinetic Model of Cure as an Aid to Property and Processing Control	409

V. Molding Technology of Elastomers	421
A. Elastomers as Engineering Materials	421
B. Elastomer Molding	422
C. The Use of Elastomer Rheological Properties in Molding Laminated Elastomer Composites	424
D. Summary	430
References	431
6. Injection Molding of Rubber Compounds	435
<i>Avraam I. Isayev</i>	
I. Introduction	435
II. Progress in Injection Molding of Rubber	436
A. Introductory Remarks	436
B. Injection Machines	437
C. Rheology of Rubber Compounds	439
D. Scorching and Moldability	444
E. Modeling of the Injection-Molding Process	446
F. Characterization of Rubber Molding	459
III. Suggestions for Future Work	464
A. General	464
B. Characterization of Rubber Compounds	464
C. Experimental Investigation and Modeling of the Molding Process	466
IV. Concluding Remarks	473
References	473
7. Compression Molding of Polymers and Composites	481
<i>Charles L. Tucker III</i>	
I. Introduction	481
A. Technological Significance of Compression Molding	481
B. Critical Issues	482
C. Scope of This Chapter	483
D. Stages in the Compression Molding Process	483
II. Flow Models for Thin Cavities	485
A. Approximations for Thin Parts	485
B. Generalized Hele-Shaw Flow Model	488
C. Lubricated Squeezing Flow Model	497
D. Controlling Flow in the Mold	504
III. Heat Transfer and Curing	504
A. Heat Transfer During Mold Filling	506
B. Kinetics of the Curing Reaction	510
C. Heat Transfer and Curing	516

D. Thermal Design of Molds	520
E. Residual Stresses	523
IV. More Complex Rheological Effects	528
A. Effect on Mold Filling Pattern	528
B. Effect on Mold Closing Force	533
V. Fiber Orientation	539
A. Phenomenology	539
B. Models for Concentrated Suspensions	542
C. Predicting Fiber Orientation	547
D. Measuring and Characterizing Fiber Orientation	554
E. Fiber Damage During Flow	559
VI. Summary and Conclusions	560
References	562
 8. Design of Mold Cooling System	567
<i>Kamar J. Singh</i>	
I. Introduction	567
II. Heat Transfer in Molds	568
A. Conduction	569
B. Convection	570
C. Radiation	574
III. Cooling of Plastic	575
IV. Heat Flow Through Molds	580
V. Cooling System	581
A. Cooling Lines	581
B. Heat Pipes	581
C. Bubblers	583
D. Baffles	585
VI. Coolants	586
VII. Design of Cooling System	587
VIII. Optimum Parameters	572
IX. Defects in Plastic Parts	593
A. Warpage	594
B. Residual Stress	595
X. Computer-Aided Design of Cooling Systems	597
A. Computer Software	598
B. Example Problems	598
References	605
 9. Computer-Aided Mold Design and Manufacturing	607
<i>K. K. Wang and V. W. Wang</i>	
I. Introduction	607
A. Typical Mold Configurations	607

B. Conventional Mold Design and Manufacturing Methods	608
C. Computer-Based Mold Design and Manufacture	609
II. Overview of Interactive Computer Graphics and Geometric Modeling	610
A. Display Devices	611
B. Input Devices and Techniques	613
C. Geometric Modeling	615
III. CAD/CAE/CAM Software for Injection Molding	620
A. Runner System Design	621
B. Mold-Filling Simulation Programs	634
C. Cooling-System Design Program with Three-Dimensional Boundary Element Method	649
D. Mold Assembly Design	657
E. Computer-Aided Mold Manufacturing	659
F. Integrated System for Mold Design and Manufacture	662
IV. Concluding Remarks	667
References	668
Author Index	671
Subject Index	687