

Contents

Preface	page xvii
Acknowledgements	xxii

Chapter 1 | Plants and the origin of the biosphere

1.1 Introduction	1
1.2 Energy flow and photosynthesis	4
1.3 Membranes	10
1.4 Eukaryotic cells	11
1.5 The origin of photosynthesis	15
1.6 The oxygen revolution	18
1.6.1 Changes in ocean chemistry	18
1.6.2 Changes in the composition of the atmosphere	20
1.6.3 Formation of the ozone layer	20
1.7 The Cambrian explosion of multicellular life	21
1.8 Colonizing the land	21
1.9 Plants and climate	26
1.10 Sediment and ice cores: reconstructing past climates	28
1.11 Conclusion	33
Further reading	34

Chapter 2 | Description of vegetation: the search for global patterns

2.1 Introduction	35
2.2 Phylogenetic perspectives	36
2.2.1 Early plant classification: Linnaeus, Bentham, Hooker	36
2.2.2 The discovery of evolution: Wallace, Darwin, Bessey	38
2.2.3 Molecular systematics and phylogeny	41
2.2.4 The two largest families of plants: Asteraceae and Orchidaceae	43
2.2.5 World floristic regions: phylogeny and geography	46
2.2.6 Summary and limitations	48
2.3 Functional perspectives	50
2.3.1 von Humboldt, Raunkiaer, Krichmer	51
2.3.2 The classification of climate	56
2.3.3 Limitations	58
2.4 Conclusion	59
Further reading	61

Chapter 3 | Resources

3.1	Introduction	63
3.1.1	The CHNOPS perspective	63
3.1.2	The costs of acquisition	67
3.2	Carbon dioxide: foraging in an atmospheric reservoir	68
3.3	Light and photosynthesis: harvesting photons	70
3.3.1	Three measures of photon harvest	70
3.3.2	Architecture and photon harvesting	70
3.3.3	Different photosynthetic types	73
3.3.4	An exception to the rule: root uptake of CO ₂	75
3.3.5	Another view of photosynthetic types	76
3.3.6	The overriding importance of height	77
3.3.7	Ecosystem effects: net primary production changes with plant size	78
3.4	Below-ground resources	79
3.4.1	Water	79
3.4.2	Mineral nutrients: a single cell perspective	81
3.4.3	Phosphorus	83
3.4.4	Nitrogen	85
3.4.5	Experimental tests for nitrogen and phosphorus limitation	86
3.4.6	Other sources of evidence for nutrient limitation	91
3.5	Changing availability of resources in space and time	93
3.5.1	Small scale heterogeneity	93
3.5.2	Resource gradients	94
3.5.3	Resources in transitory patches	100
3.6	Resources as a habitat template for plant populations	101
3.7	Resource fluctuations complicate short-term ecological studies	105
3.8	Chronic scarcity of resources and conservation	108
3.8.1	Limitation by scarce resources	108
3.8.2	Conservation of scarce resources	114
3.9	Soils	116
3.10	Two historical digressions	120
3.11	Humans and soil resources	121
3.12	Conclusion	123
	Further reading	125

Chapter 4 | Stress

4.1	Introduction	126
4.1.1	Definitions	126
4.1.2	More on terminology	127
4.2	Some general consequences of stress	128
4.2.1	Short-term effects: stress has metabolic costs	128
4.2.2	The costs of adaptation to stress	131

4.2.3 Growth rate	134
4.2.4 Seed size	135
4.2.5 Clonal integration	140
4.3 Habitats with drought as the predominant stress	144
4.3.1 Deserts	144
4.3.2 Mediterranean shrublands	150
4.3.3 Rock barrens	152
4.3.4 Coniferous forests	156
4.4 Unavailability of resources	159
4.5 Presence of a regulator	162
4.5.1 Salinity	162
4.5.2 Cold environments: arctic and alpine examples	167
4.5.3 Early spring photosynthesis in temperate climates	171
4.6 Extreme cases of stress tolerance	173
4.6.1 Cold and drought tolerance of lichens	173
4.6.2 Endolithic communities	174
4.6.3 Flood tolerance	176
4.7 The smoking hills: a natural occurrence of stress from air pollution	179
4.8 Effects of ionizing radiation upon mixed forest	180
4.9 Moisture and temperature at different scales	182
4.10 Conclusion	184
Further reading	185

Chapter 5 | Competition

5.1 Introduction	186
5.1.1 The importance of competition	186
5.1.2 Definition of competition	187
5.1.3 Stress, strain, and the costs of competition	187
5.2 Kinds of competition	188
5.2.1 Intraspecific competition	188
5.2.2 Distinguishing between intraspecific and interspecific competition	190
5.2.3 Competition intensity	191
5.2.4 Competitive effect and competitive response	193
5.2.5 Competitive dominance	194
5.3 More examples of competition	197
5.3.1 Self-thinning	197
5.3.2 Dominance patterns in monocultures	198
5.3.3 Density dependence in annual plants	200
5.3.4 The relationship between intensity and asymmetry of competition	202
5.4 Competitive hierarchies	204
5.4.1 Establishing hierarchies	204
5.4.2 The consistency of hierarchies	206

5.4.3	Light and shoot size	209
5.4.4	Foraging for patches of light or soil nutrients	213
5.5	Mycorrhizae and competition	214
5.6	Competition gradients	216
5.6.1	Measuring competition intensity	216
5.6.2	Competition intensity gradients in an old field	217
5.6.3	Competition and cacti	218
5.6.4	Competition intensity along a soil depth gradient	218
5.6.5	Competition intensity gradients in wetlands	220
5.6.6	Competition along an altitudinal gradient	220
5.7	Conclusion	223
	Further reading	223
<hr/>		
Chapter 6 Disturbance		
6.1	Introduction	225
6.2	Four properties of disturbance	226
6.2.1	Duration	226
6.2.2	Intensity	226
6.2.3	Frequency	227
6.2.4	Area	228
6.3	Examples of disturbance	228
6.3.1	Fire	228
6.3.2	Erosion	236
6.3.3	Animals	238
6.3.4	Burial	243
6.3.5	Ice	249
6.3.6	Waves	249
6.3.7	Storms	252
6.4	Catastrophes: low frequency and high intensity	254
6.4.1	Landslides	254
6.4.2	Volcanic eruptions	255
6.4.3	Meteor impacts	259
6.5	Measuring the effects of disturbance	264
6.5.1	The Hubbard Brook study of forested watersheds	264
6.5.2	Ottawa River marshes	268
6.6	Disturbance and gap dynamics	269
6.6.1	Regeneration from buried seeds after disturbance	270
6.6.2	Gap regeneration in deciduous forests	272
6.6.3	Alluvial deposition	274
6.6.4	Freshwater marshes	274
6.7	Synthesis: fire, flooding, and sea level in the Everglades	275
6.8	Competition, disturbance, and stress: the CSR synthesis	276
6.9	Conclusion	281
	Further reading	282

Chapter 7 | Herbivory

7.1 Introduction	284
7.2 Field observations on wildlife diets	286
7.2.1 Herbivores in African grasslands	286
7.2.2 Herbivorous insects in tropical forest canopies	289
7.2.3 Giant tortoises on islands	290
7.2.4 Herbivory in anthropogenic landscapes	292
7.3 Plant defenses	293
7.3.1 Evolutionary context	293
7.3.2 Structures that protect seeds: strobili and squirrels	293
7.3.3 Secondary metabolites that protect foliage	297
7.3.4 Two cautions when interpreting anti-herbivore traits	299
7.3.5 Food quality and nitrogen content	300
7.3.6 Coevolution: a brief preview	302
7.4 Field experiments	303
7.4.1 Herbivorous insects in deciduous forest canopies	304
7.4.2 Land crabs in tropical forest	305
7.4.3 Herbivores in grassland: the Cape Province, the Pampas, and the Serengeti	306
7.4.4 Effects of rhinoceroses in tropical floodplain forest	313
7.4.5 Large mammals in deciduous forest	313
7.4.6 Effects of an introduced species: nutria	316
7.5 Empirical relationships	318
7.6 Some theoretical context	322
7.6.1 Top-down or bottom-up?	322
7.6.2 Effects of selective herbivory on plant diversity	324
7.6.3 A simple model of herbivory	325
7.6.4 Extensions of herbivory models	327
7.7 Conclusion	332
Further reading	334

Chapter 8 | Positive interactions: mutualism, commensalism, and symbiosis

8.1 Introduction	336
8.1.1 Definitions	336
8.1.2 History	337
8.2 Positive interactions between plants and plants	338
8.2.1 Nurse plants	338
8.2.2 Stress gradients and competition	341
8.2.3 More cases of co-operation	342
8.2.4 Summary	345
8.3 Positive interactions between fungi and plants	346
8.3.1 Ectomycorrhizae and endomycorrhizae	346
8.3.2 Ectomycorrhizae and forests	349

8.3.3 Mycorrhizae in wetlands	350
8.3.4 Costs and benefits of mycorrhizal associations	354
8.3.5 Lichens	355
8.4 Positive interactions between plants and animals	358
8.4.1 Animals and flowers	358
8.4.2 Animals and seed dispersal	365
8.4.3 The costs of sexual reproduction	379
8.4.4 Experimental tests of the value of sexuality	381
8.4.5 Animals defending plants	387
8.4.6 Microbes in animal guts	390
8.5 Mathematical models of mutualism	395
8.5.1 Population dynamics models	395
8.5.2 Cost-benefit models	396
8.6 Mutualism and apparent competition	398
8.7 Conclusion	399
Further reading	402

Chapter 9 | Time

9.1 Introduction	403
9.2 $>10^6$ years: the origin of the angiosperms and continental drift	405
9.2.1 Temperate evergreen forests	410
9.2.2 Deserts	411
9.2.3 Tropical floras	412
9.3 $>10^4$ years: the Pleistocene glaciations	418
9.3.1 Erosion and deposition by glacial ice	419
9.3.2 Loess	419
9.3.3 Pluvial lakes	422
9.3.4 Drought and tropical forests	423
9.3.5 Sea level decrease	425
9.3.6 Migration	426
9.3.7 Hominids	428
9.3.8 Flooding	430
9.4 $>10^2$ years: plant succession	431
9.4.1 Succession	431
9.4.2 Examples of succession	432
9.4.3 Predictive models for plant succession	446
9.4.4 Synthesis	448
9.5 Conclusion	454
Further reading	455

Chapter 10 | Gradients and plant communities: description at local scales

10.1 Introduction	457
10.2 Describing pattern along obvious natural gradients	458
10.3 Multivariate methods for pattern detection	464

10.3.1 The data matrix	465
10.3.2 Measuring similarity	466
10.3.3 Ordination techniques	468
10.3.4 Ordinations based upon species data	468
10.3.5 Ordinations combining species and environmental data	470
10.3.6 Functional simplification in ordination	471
10.4 Vegetation classification	474
10.4.1 Phytosociology	475
10.4.2 Classification and land management	476
10.5 Gradients and communities	485
10.5.1 Clements and Gleason	485
10.5.2 The temporary victory of the Gleasonian view	486
10.5.3 Null models and patterns along gradients	487
10.6 Empirical studies of pattern along gradients	491
10.7 Conclusion	500
Further Reading	501

Chapter 11 | Diversity

11.1 Introduction	502
11.2 Large areas have more plant species	502
11.3 Areas with more kinds of habitat have more species	505
11.4 Equatorial areas have more species	508
11.5 Some evolutionary context	514
11.5.1 Four key events	514
11.5.2 Some characteristics of angiosperms	515
11.5.3 Physiological constraints on diversity are likely additive	516
11.6 Examples of plant species diversity	518
11.6.1 Mediterranean climate regions	518
11.6.2 Carnivorous plants	520
11.6.3 Deciduous forests	522
11.6.4 Diversity, biogeography, and the concept of endemism	522
11.7 Models to describe species diversity at smaller scales	523
11.7.1 Intermediate biomass	524
11.7.2 Competitive hierarchies	526
11.7.3 Intermediate disturbance	527
11.7.4 Centrifugal organization	529
11.8 Relative abundance – dominance, diversity, and evenness	532
11.9 Laboratory experiments on richness and diversity	539
11.10 Field experiments on richness and diversity	541
11.11 Implications for conservation	543
11.12 Conclusion	546
Further reading	547

Chapter 12 | Conservation and management

12.1 Introduction	543
12.2 Some historical context	550
12.2.1 Ancient Assyria	550
12.2.2 Deforestation in Ancient Rome and the Mediterranean	551
12.3 Vegetation types at risk	553
12.3.1 The destruction of Louisiana's alluvial forests	553
12.3.2 Islands: Easter Island and the Galapagos	564
12.3.3 Boreal forests	569
12.4 Protection of representative vegetation types	570
12.4.1 Designing reserve systems	570
12.4.2 Hot spots of biological diversity	573
12.4.3 Primary forests	574
12.4.4 Large wetlands	576
12.4.5 New discoveries of species in the Guyana highlands	578
12.4.6 Economic growth, human welfare, and wilderness	580
12.5 Fragmentation of natural landscapes	581
12.5.1 Fens in agricultural landscapes	582
12.5.2 Deciduous forests in agricultural landscapes	584
12.5.3 How much is enough?	586
12.6 Function, management, and thresholds	588
12.6.1 Two perspectives	588
12.6.2 Plant communities are dynamic	592
12.6.3 Ecological footprints for human cities	593
12.6.4 Thresholds	595
12.7 Restoration	599
12.8 Indicators	602
12.9 Conclusion	604
Further reading	608
<i>Questions for Review</i>	610
<i>References</i>	612
<i>Index</i>	667
<i>Enrichment Boxes</i>	
Box 1.1 The biosphere	3
Box 2.1 A man of his times: Alexander von Humboldt	52
Box 3.1 The composition and origin of the atmosphere	66
Box 3.2 Fritz Haber changes the global nitrogen cycle	87
Box 3.3 A Darwinian approach to plant traits	104
Box 4.1 The discovery of carnivorous plants	136
Box 5.1 Testing for higher order pattern in competitive relationships	207
Box 7.1 Experimental design	312
Box 7.2 A demographic study of the effects of deer browsing	315

Box 8.1 The discovery of mycorrhizae by Bernard Frank	348
Box 9.1 Mr. Hofmeister and the vanishing gametophyte	415
Box 10.1 Getting the history right: null models in ecology	488
Box 10.2 A possible synthesis: Gleason, Clements, and a community structure continuum	497
Box 11.1 Diversity indices	534
Box 11.2 Rothamsted, the Park Grass Experiment	536
Box 12.1 Conservation of tropical forest in the Caribbean: ca. 1650–1950	583
Box 12.2 The sinking of the <i>Rainbow Warrior</i>	606