

Contents

CHAPTER 1

Evolutionary Biology 1

What Is Evolution? 2

Before Darwin 4

Charles Darwin 6

Darwin's Evolutionary Theory 7

Evolutionary Theories after Darwin 8

The Evolutionary Synthesis 9

 Fundamental principles of evolution 9

Evolutionary Biology since the Synthesis 11

Philosophical Issues 12

Ethics, Religion, and Evolution 13

Evolution as Fact and Theory 13

CHAPTER 2

The Tree of Life: Classification and Phylogeny 17

Classification 19

Inferring Phylogenetic History 22

 Similarity and common ancestry 22

 Complications in inferring phylogeny 25

 The method of maximum parsimony 27

 An example of phylogenetic analysis 29

 Evaluating phylogenetic hypotheses 31

Molecular Clocks 33

Gene Trees 35

Difficulties in Phylogenetic Analysis 37

Hybridization and Horizontal Gene Transfer 42

CHAPTER 3

Patterns of Evolution 45

Evolutionary History and Classification 47

Inferring the History of Character Evolution 48

Some Patterns of Evolutionary Change Inferred from Systematics 50

 Most features of organisms have been modified from pre-existing features 50

 Homoplasy is common 53

 Rates of character evolution differ 56

 Evolution is often gradual 57

 Change in form is often correlated with change in function 58

 Similarity among species changes throughout ontogeny 58

 Development underlies some common patterns of morphological evolution 59

Phylogenetic Analysis Documents Evolutionary Trends 63

Many Clades Display Adaptive Radiation 64

Patterns in Genes and Genomes 66

 Genome size 66

 Duplicated genes and genomes 67

CHAPTER 4

Evolution in the Fossil Record 73

Some Geological Fundamentals 73

 Plate tectonics 74

 Geological time 74

 The geological time scale 75

The Fossil Record 77

 Evolutionary changes within species 77

 Origins of higher taxa 79

The Hominin Fossil Record 88

Phylogeny and the Fossil Record 91

Evolutionary Trends 92

Punctuated Equilibria 93

Rates of Evolution 96

CHAPTER 5***A History of Life on Earth 101*****Before Life Began 102****The Emergence of Life 102****Precambrian Life 104****Paleozoic Life: The Cambrian Explosion 108****Paleozoic Life: Ordovician to Devonian 111**

Marine life 111

Terrestrial life 112

Paleozoic Life: Carboniferous and Permian 114

Terrestrial life 114

Aquatic life 115

Mesozoic Life 115

Marine life 115

Terrestrial plants and arthropods 116

Vertebrates 119

The Cenozoic Era 121

Aquatic life 122

Terrestrial life 123

The adaptive radiation of mammals 123

Pleistocene events 126

CHAPTER 6***The Geography of Evolution 133*****Biogeographic Evidence for Evolution 134****Major Patterns of Distribution 135****Historical Factors Affecting Geographic Distributions 137****Testing Hypotheses in Historical Biogeography 140**

Examples of historical biogeographic analyses 141

The composition of regional biotas 145

Phylogeography 146

Pleistocene population shifts 146

Modern human origins 147

Geographic Range Limits: Ecology and Evolution 150

Range limits: An evolutionary problem 152

Evolution of Geographic Patterns of Diversity 153

Community convergence 153

Effects of History on Contemporary Diversity Patterns 155**CHAPTER 7*****EVOLUTION******The Evolution of Biodiversity 161*****Estimating and Modeling Biological Diversity 162**

Estimates of diversity 162

Taxonomic Diversity through the Phanerozoic 163

Rates of origination and extinction 164

Extinction rates have declined over time 165

Do extinction rates change as clades age? 168

Causes of extinction 168

Mass extinctions 169

Diversification 171

Modeling rates of change in diversity 171

Does species diversity reach equilibrium? 174

CHAPTER 8***The Origin of Genetic Variation 187*****Genes and Genomes 188****Gene Mutations 190**

Kinds of mutations 191

Examples of mutations 195

Rates of mutation 196

Phenotypic effects of mutations 200

Effects of mutations on fitness 202

The limits of mutation 205

Mutation as a Random Process 206**Alterations of the Karyotype 207**

Polyploidy 207

Chromosome rearrangements 208

CHAPTER 9***Variation 215*****Sources of Phenotypic Variation 217****Fundamental Principles of Genetic Variation in Populations 220**

Frequencies of alleles and genotypes: The Hardy-Weinberg principle 221

An example: The human MN locus 223

The significance of the Hardy-Weinberg principle: Factors in evolution 224

Frequencies of alleles, genotypes, and phenotypes	225
Inbreeding	225
Genetic Variation in Natural Populations: Individual Genes	227
Morphology and viability	227
Inbreeding depression	229
Genetic variation at the molecular level	229
Genetic Variation in Natural Populations: Multiple Loci	232
Variation in quantitative traits	236
Variation among Populations	241
Patterns of geographic variation	241
Gene flow	244
Allele frequency differences among populations	246
Human genetic variation	248

CHAPTER 10

Genetic Drift: Evolution at Random 255

The Theory of Genetic Drift	256
Genetic drift as sampling error	256
Coalescence	257
Random fluctuations in allele frequencies	259
Evolution by Genetic Drift	260
Effective population size	261
Founder effects	263
Genetic drift in real populations	263
The Neutral Theory of Molecular Evolution	266
Principles of the neutral theory	267
Variation within and among species	269
Support for the neutral theory	270
Gene Flow and Genetic Drift	272
Gene trees and population history	272
The origin of modern <i>Homo sapiens</i> revisited	274

CHAPTER 11

Natural Selection and Adaptation 279

Adaptations in Action: Some Examples	280
The Nature of Natural Selection	282
Design and mechanism	282
Definitions of natural selection	283
Natural selection and chance	284
Selection of and selection for	284

Examples of Natural Selection	285
Bacterial populations	285
Inversion polymorphism in <i>Drosophila</i>	286
Male reproductive success	287
Population size in flour beetles	288
Kin discrimination in cannibalistic salamanders	289
Selfish genetic elements	290

Levels of Selection 290

Selection of organisms and groups	291
Species selection	293

The Nature of Adaptations 294

Definitions of adaptation	294
Recognizing adaptations	294

What Not to Expect of Natural Selection and Adaptation 298

The necessity of adaptation	298
Perfection	299
Progress	299
Harmony and the balance of nature	299
Morality and ethics	300

CHAPTER 12

The Genetical Theory of Natural Selection 303

Fitness	304
Modes of selection	304
Defining fitness	305
Components of fitness	306
Models of Selection	308
Directional selection	308
Deleterious alleles in natural populations	312
Polymorphism Maintained by Balancing Selection	315
Heterozygote advantage	315
Antagonistic and varying selection	317
Frequency-dependent selection	318
Multiple Outcomes of Evolutionary Change	321
Positive frequency-dependent selection	321
Heterozygote disadvantage	321
Adaptive landscapes	322
Interaction of selection and genetic drift	322
The Strength of Natural Selection	324
Molecular Signatures of Natural Selection	325
Theoretical expectations	325
Signatures of selection	329
Adaptive evolution across the genome	332

CHAPTER 13

Phenotypic Evolution 337*Genetic Architecture of Phenotypic Traits* 338**Components of Phenotypic Variation 340**

Genetic variance in natural populations 343

Genetic Drift or Natural Selection? 343**Natural Selection on Quantitative Traits 345**

Response to directional selection 345

Responses to artificial selection 345

Directional selection in natural populations 347

Stabilizing and disruptive selection 348

Evolution observed 348

What Maintains Genetic Variation in Quantitative Characters? 350**Correlated Evolution of Quantitative Traits 352**

Correlated selection 352

Genetic correlation 352

How genetic correlation affects evolution 354

Can Genetics Predict Long-Term Evolution? 355**Norms of Reaction 357**

Canalization 357

Phenotypic plasticity 358

Evolution of variability 360

Genetic Constraints on Evolution 362

CHAPTER 14

The Evolution of Life Histories 369**Individual Selection and Group Selection 371****Modeling Optimal Phenotypes 372****Life History Traits as Components of Fitness 373**

Female fecundity, semelparity, and iteroparity 374

Age structure and reproductive success 376

Trade-Offs 377**The Evolution of Life History Traits 379**

Life span and senescence 379

Age schedules of reproduction 380

Number and size of offspring 381

The Evolution of the Rate of Increase 383

CHAPTER 15

Sex and Reproductive Success 387**The Evolution of Mutation Rates 388****Sexual and Asexual Reproduction 388****The Paradox of Sex 389**

Parthenogenesis versus the cost of sex 389

Hypotheses for the advantage of sex and recombination 391

Sex Ratios and Sex Allocation 393**Inbreeding and Outcrossing 395****The Concept of Sexual Selection 397****Contests between Males and between Sperm 398****Sexual Selection by Mate Choice 400**

Direct benefits of mate choice 400

Indirect benefits of mate choice 402

Sensory bias 405

Antagonistic coevolution 406

Alternative Mating Strategies 408

CHAPTER 16

Conflict and Cooperation 413**Conflict 414****Social Interactions and Cooperation 417**

Cooperation based on direct benefits 417

Reciprocity: Cooperation based on repeated interactions 418

The evolution of altruism by shared genes 420

A Genetic Battleground: The Family 424

Mating systems and parental care 424

Infanticide, abortion, and siblicide 426

Parent-offspring conflict 427

Cooperative breeding 427

Social insects 428

Genetic Conflict 431**Parasitism, Mutualism, and Levels of Organization 433****Human Behavior and Human Societies 435**

Variation in sexual orientation 435

The question of human nature 437

Cultural evolution and gene-culture coevolution 438

CHAPTER 17**Species 445****What Are Species? 446**

- Phylogenetic species concepts 447
- The biological species concept 447
- Domain and application of the biological species concept 448
- Taxonomic versus biological species 450
- When species concepts conflict 451

Barriers to Gene Flow 451

- Premating barriers 451
- Postmating, prezygotic barriers 453
- Postzygotic barriers 455

How Species Are Diagnosed 456**Differences among Species 456****The Genetic Basis of Reproductive Barriers 458**

- Genes affecting reproductive isolation 458
- Functions of genes that cause reproductive isolation 461
- Chromosome differences and postzygotic isolation 461
- The significance of genetic studies of reproductive isolation 462

Molecular Divergence among Species 463**Hybridization 464**

- Primary and secondary hybrid zones 464
- Genetic dynamics in a hybrid zone 465
- The fate of hybrid zones 467

CHAPTER 18**Speciation 471****Modes of Speciation 472****Allopatric Speciation 473**

- Evidence for allopatric speciation 473
- Mechanisms of vicariant allopatric speciation 476
- Ecological selection and speciation 477
- Sexual selection and speciation 480
- Reinforcement of reproductive isolation 481
- Peripatric speciation 484

Alternatives to Allopatric Speciation 486

- Parapatric speciation 486
- Sympatric speciation 487

Polyploidy and Recombinational Speciation 490

- Polyploidy 490
- Recombinational speciation 492

How Fast Is Speciation? 493**Consequences of Speciation 495****CHAPTER 19****Coevolution: Evolving Interactions among Species 499****The Nature of Coevolution 500****Phylogenetic Aspects of Species Associations 501****Coevolution of Enemies and Victims 503**

- Models of enemy-victim coevolution 504
- Examples of predator-prey coevolution 506
- Plants and herbivores 507
- Infectious disease and the evolution of parasite virulence 510

Mutualisms 513**The Evolution of Competitive Interactions 516**

- Multispecies interactions and community structure 518

CHAPTER 20**Evolution of Genes and Genomes 523****New Molecules and Processes in Genomes 525****Genome Diversity and Evolution 525**

- Diversity of genome structure 525
- Viral and microbial genomes—the smallest genomes 527
- Repetitive sequences and transposable elements 529
- New genomes reveal major events in the history of life 531

Protein Evolution and Translational Robustness 532

- Codon bias 532
- Gene expression and selection on translation errors 533

Natural Selection across the Genome 534

- Adaptive molecular evolution in primates 535
- Molecular evolution in the human lineage 536
- Scaling up: From gene to genome 536

Origin of New Genes 537

- Lateral gene transfer 537
- Origin of new genes from noncoding regions 537
- Exon shuffling 538
- Gene chimerism 540
- Motif multiplication and exon loss 541

***The Evolution of Multigene Families* 542**

Gene duplication 542

Multigene families and the origin of key innovations 543

***Gene and Genome Duplication* 545**

Duplication of whole genomes and chromosomal segments 545

Possible fates of duplicate genes 546

Selective fates of recently duplicated loci 548

Rates of gene duplication 549

CHAPTER 21***Evolution and Development* 553*****Hox Genes and the Dawn of Modern EDB* 554*****Types of Evidence in Contemporary EDB* 559*****The Evolving Concept of Homology* 560*****Evolutionarily Conserved Developmental Pathways* 563*****Gene Regulation: A Keystone of Developmental Evolution* 565**

Evolution of protein-coding sequences is also an important contributor to phenotypic evolution 569

Modularity in morphological evolution 569

Co-option and the evolution of novel characters 570

The developmental genetics of heterochrony 571

The evolution of allometry 573

Developmental Constraints and Morphological Evolution* 574**The Molecular Genetic Basis of Gene Regulatory Evolution* 578*****Toward the EDB of *Homo sapiens** 581****CHAPTER 22*****Macroevolution: Evolution above the Species Level* 585*****Rates of Evolution* 586**

Punctuated equilibrium and stasis 587

Gradualism and Saltation* 590**Phylogenetic Conservatism and Change* 592*****The Evolution of Novelty* 595**

Accounting for incipient and novel features 595

Complex characteristics 597

***Trends and Progress* 600**

Trends: Kinds and causes 600

Examples of trends 601

Are there major trends in the history of life? 602

The question of progress 605

CHAPTER 23***Evolutionary Science, Creationism, and Society* 609*****Creationists and Other Skeptics* 610*****Science, Belief, and Education* 611*****The Evidence for Evolution* 614**

The fossil record 614

Phylogenetic and comparative studies 615

Genes and genomes 615

Biogeography 616

Failures of the argument from design 616

Evolution and its mechanisms, observed 618

***Refuting Creationist Arguments* 619**

On arguing for evolution 623

***Why Should We Teach Evolution?* 623**

Health and medicine 624

Agriculture and natural resources 627

Environment and conservation 628

Human behavior 629

Understanding nature and humanity 631

Glossary* G-1**Literature Cited* LC-1*****Index* I-1**