

Contents

PREFACE	xi
1. INTRODUCTION	1
1.1. Energy needs / 1	
1.2. Energy and the challenge of global climate change / 2	
1.3. Bioelectricity generation using a microbial fuel cell—the process of electrogenesis / 4	
1.4. MFCs and energy sustainability of the water infrastructure / 6	
1.5. MFC technologies for wastewater treatment / 7	
1.6. Renewable energy generation using MFCs / 9	
1.7. Other applications of MFC technologies / 11	
2. EXOELECTROGENS	12
2.1. Introduction / 12	
2.2. Mechanisms of electron transfer / 13	
2.3. MFC studies using known exoelectrogenic strains / 18	
2.4. Community analysis / 22	
2.5. MFCs as tools for studying exoelectrogens / 27	
3. VOLTAGE GENERATION	29
3.1. Voltage and current / 29	
3.2. Maximum voltages based on thermodynamic relationships / 30	
3.3. Anode potentials and enzyme potentials / 36	
3.4. Role of communities versus enzymes in setting anode potentials / 40	
3.5. Voltage generation by fermentative bacteria? / 41	
4. POWER GENERATION	44
4.1. Calculating power / 44	
4.2. Coulombic and energy efficiency / 48	
4.3. Polarization and power density curves / 50	

Contents

4.4. Measuring internal resistance / 54	54
4.5. Chemical and electrochemical analysis of reactors / 57	57
5. MATERIALS	6
5.1. Finding low-cost, highly efficient materials / 61	61
5.2. Anode materials / 62	62
5.3. Membranes and separators (and chemical transport through them) / 68	68
5.4. Cathode materials / 76	76
5.5. Long-term stability of different materials / 83	83
6. ARCHITECTURE	8
6.1. General requirements / 85	85
6.2. Air-cathode MFCs / 86	86
6.3. Aqueous cathodes using dissolved oxygen / 95	95
6.4. Two-chamber reactors with soluble catholytes or poised potentials / 97	97
6.5. Tubular packed bed reactors / 102	102
6.6. Stacked MFCs / 104	104
6.7. Metal catholytes / 105	105
6.8. Biohydrogen MFCs / 108	108
6.9. Towards a scalable MFC architecture / 110	110
7. KINETICS AND MASS TRANSFER	11
7.1. Kinetic- or mass transfer-based models? / 111	111
7.2. Boundaries on rate constants and bacterial characteristics / 112	112
7.3. Maximum power from a monolayer of bacteria / 116	116
7.4. Maximum rate of mass transfer to a biofilm / 118	118
7.5. Mass transfer per reactor volume / 122	122
8. MECs FOR HYDROGEN PRODUCTION	12
8.1. Principle of operation / 125	125
8.2. MEC systems / 127	127
8.3. Hydrogen yield / 131	131
8.4. Hydrogen recovery / 132	132
8.5. Energy recovery / 134	134
8.6. Hydrogen losses / 142	142
8.7. Differences between the MEC and MFC systems / 145	145
9. MFCs FOR WASTEWATER TREATMENT	14
9.1. Process trains for WWTPs / 146	146
9.2. Replacement of the biological treatment reactor with an MFC / 149	149
9.3. Energy balances for WWTPs / 154	154
9.4. Implications for reduced sludge generation / 157	157
9.5. Nutrient removal / 158	158
9.6. Electrogenesis versus methanogenesis / 159	159

10. OTHER MFC TECHNOLOGIES	162
10.1. Different applications for MFC-based technologies /	162
10.2. Sediment MFCs /	162
10.3. Enhanced sediment MFCs /	166
10.4. Bioremediation using MFC technologies /	168
11. FUN!	171
11.1 MFCs for new scientists and inventors /	171
11.2 Choosing your inoculum and media /	174
11.3 MFC materials: electrodes and membranes /	175
11.4 MFC architectures that are easy to build /	176
11.5 MEC reactors /	180
11.6 Operation and assessment of MFCs /	181
12. OUTLOOK	182
12.1 MFCs yesterday and today /	182
12.2 Challenges for bringing MFCs to commercialization /	183
12.3 Accomplishments and outlook /	184
NOTATION	186
REFERENCES	189
INDEX	199