

<i>Contributor contact details</i>	xi
Introduction	xv
K OKSMAN NISKA, Luleå University of Technology, Sweden and M SAIN, University of Toronto, Canada	
1 Raw materials for wood–polymer composites	1
C CLEMONS, USDA Forest Service, USA	
1.1 Introduction	1
1.2 Polymers: structure and properties	2
1.3 Wood: structure and properties	10
1.4 Sources of further information and advice	20
1.5 References and further reading	20
2 Additives for wood–polymer composites	23
D V SATOV, Canada Colors and Chemicals Limited, Canada	
2.1 Introduction	23
2.2 Lubricants and rheology control additives for thermoplastic composites	26
2.3 Coupling agents	29
2.4 Stabilizers	31
2.5 Fillers	33
2.6 Density reduction additives	36
2.7 Biocides	36
2.8 Product aesthetics additives	37
2.9 Flame retardants and smoke suppressants	38
2.10 Future trends	40
2.11 Conclusion	40

3	Interactions between wood and synthetic polymers	41
	K OKSMAN NISKA, Luleå University of Technology, Sweden	
	and A R SANADI, University of Copenhagen, Denmark	
3.1	Introduction	41
3.2	The interface and interphase in composites	42
3.3	Wetting, adhesion and dispersion	43
3.4	Techniques to evaluate interfacial interactions and adhesion	48
3.5	Improving interface interactions in wood–polymer composites	60
3.6	Interphase effects on other properties	66
3.7	Conclusions	68
3.8	References and further reading	69
4	Manufacturing technologies for wood–polymer composites	72
	D SCHWENDEMANN, Coperion Werner & Pfleiderer GmbH & Co. KG, Germany	
4.1	Introduction	72
4.2	Raw material handling	72
4.3	Compounding technologies	79
4.4	Pelletising systems	90
4.5	Profile extrusion	95
4.6	Injection moulding	95
4.7	Sheet extrusion	98
4.8	Future trends	100
4.9	References	100
5	Mechanical properties of wood–polymer composites	101
	M SAIN and M PERVAIZ, University of Toronto, Canada	
5.1	Introduction	101
5.2	Mechanical performance of wood–polymer composites	101
5.3	General mechanical properties of wood–polymer composites and test methods	104
5.4	Critical parameters affecting mechanical properties of wood–polymer composites	109
5.5	Conclusions	116
5.6	References	116

6	Micromechanical modelling of wood–polymer composites	118
	R C NEAGU, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E K GAMSTEDT, Kungliga Tekniska Högskolan (KTH), Sweden	
6.1	Introduction	118
6.2	Elastic properties	119
6.3	Hygroexpansion	131
6.4	Strength	134
6.5	Conclusions	138
6.6	References	138
7	Outdoor durability of wood–polymer composites	142
	N M STARK, USDA Forest Service, USA and D J GARDNER, University of Maine, USA	
7.1	Introduction	142
7.2	Characteristics of raw materials	142
7.3	Changes in composite properties with exposure	145
7.4	Methods for protection	155
7.5	Future trends	161
7.6	Sources of further information and advice	162
7.7	References and further reading	162
8	Creep behavior and damage of wood–polymer composites	166
	N E MARCOVICH and M I ARANGUREN, Universidad Nacional de Mar del Plata, Argentina	
8.1	Introduction	166
8.2	Viscoelasticity and creep	167
8.3	Creep in wood–plastic composites	176
8.4	Creep failure and material damage	183
8.5	Conclusions and future trends	185
8.6	References	186
9	Processing performance of extruded wood–polymer composites	190
	K ENGLUND and M WOLCOTT, Washington State University, USA	
9.1	Introduction	190
9.2	Current extrusion processing methods for natural fiber–thermoplastic composites	191
9.3	Rheology of a wood fiber-filled thermoplastic	193

9.4	Commercial wood–polymer composites	197
9.5	References	207
10	Oriented wood–polymer composites and related materials	208
	F W MAINE, Frank Maine Consulting Ltd., Canada	
10.1	Introduction	208
10.2	Orientation of polymers	208
10.3	Applications	212
10.4	Current developments	219
10.5	Future trends	225
10.6	References	225
11	Wood–polymer composite foams	227
	G GUO, University of Southern California, USA, G M RIZVI, University of Ontario Institute of Technology, Canada and C B PARK, University of Toronto, Canada	
11.1	Introduction	227
11.2	Structure and characterization of wood–polymer composite foams	229
11.3	Critical issues in production of wood–polymer composite foams	231
11.4	Fundamental mechanisms in blowing agent-based foaming of wood–polymer composites	235
11.5	Foaming of wood–polymer composites with chemical blowing agents	239
11.6	Foaming of wood–polymer composites with physical blowing agents	244
11.7	Foaming of wood–polymer composites with heat expandable microspheres	249
11.8	Void formation in wood–polymer composites using stretching technology	250
11.9	Effects of additives on wood–polymer composite foams	250
11.10	Summary and future trends	252
11.11	References	253
12	Performance measurement and construction applications of wood–polymer composites	257
	R J TICHY, Washington State University, USA	
12.1	Introduction	257
12.2	Performance measures and building codes	259
12.3	Wood–polymer composite properties	260
12.4	Building construction applications	265

12.5	Conclusions	270
12.6	References	271
13	Life-cycle assessment (LCA) of wood–polymer composites: a case study	273
	T THAMAE and C BAILLIE, Queens University, Canada	
13.1	Introduction: comparing wood–polymer and glass-fiber reinforced polypropylene car door panels	273
13.2	The life-cycle assessment process	274
13.3	Goal and scope definition	276
13.4	Inventory	282
13.5	Impact assessment	285
13.6	Interpretation	291
13.7	The possible effect of European Union legislation on end-of-life vehicles	295
13.8	Conclusions	296
13.9	Acknowledgements	297
13.10	References	297
14	Market and future trends for wood–polymer composites in Europe: the example of Germany	300
	M CARUS and C GAHLE, nova-Institut, Germany and H KORTE, Innovationsberatung Holz & Fasern, Germany	
14.1	Introduction	300
14.2	The development of the European market: the example of Germany	301
14.3	The most significant wood–polymer composite products in the European market	304
14.4	Future trends: markets	309
14.5	Future trends: processing and materials	311
14.6	Conclusions	316
14.7	Wood–polymer composite codes, standards, research and manufacturing in Europe	317
14.8	The nova-Institut and Innovationsberatung Holz und Fasern	322
14.9	Examples of wood–polymer composite products	325
14.10	References	329
15	Improving wood–polymer composite products: a case study	331
	A A KLYOSOV, MIR International Inc., USA	
15.1	Introduction: wood–polymer composite decking	331
15.2	Brands and manufacturers	332

15.3	Improving the performance of wood-polymer composite decking	333
15.4	Conclusions	352
15.5	References	353
	<i>Index</i>	354

CONTENTS OF VOLUME 10, PART 2

16.1	Improving the performance of wood-polymer composite decking	333
16.2	Conclusions	352
16.3	References	353
	<i>Index</i>	354