

Contents

Preface and acknowledgments, xi

1 Thinking like a population geneticist, 1

- 1.1 Expectations, 1
 - Parameters and parameter estimates*, 2
 - Inductive and deductive reasoning*, 3
- 1.2 Theory and assumptions, 4
- 1.3 Simulation, 6
 - Interact box 1.1 The textbook website, 7

Chapter 1 review, 8

Further reading, 8

2 Genotype frequencies, 9

- 2.1 Mendel's model of particulate genetics, 9
- 2.2 Hardy–Weinberg expected genotype frequencies, 13
 - Interact box 2.1 Genotype frequencies, 14
- 2.3 Why does Hardy–Weinberg work?, 17
- 2.4 Applications of Hardy–Weinberg, 19
 - Forensic DNA profiling*, 19
 - Problem box 2.1 The expected genotype frequency for a DNA profile, 22
 - Testing for Hardy–Weinberg*, 22
 - Box 2.1 DNA profiling, 22
 - Interact box 2.2 χ^2 test, 26
 - Assuming Hardy–Weinberg to test alternative models of inheritance*, 26
 - Problem box 2.2 Proving allele frequencies are obtained from expected genotype frequencies, 27
 - Problem box 2.3 Inheritance for corn kernel phenotypes, 28
- 2.5 The fixation index and heterozygosity, 28
 - Interact box 2.3 Assortative mating and genotype frequencies, 29
 - Box 2.2 Protein locus or allozyme genotyping, 32
- 2.6 Mating among relatives, 33
 - Impacts of inbreeding on genotype and allele frequencies*, 33
 - Inbreeding coefficient and autozygosity in a pedigree*, 34
 - Phenotypic consequences of inbreeding*, 37
 - The many meanings of inbreeding*, 40
- 2.7 Gametic disequilibrium, 41
 - Interact box 2.4 Decay of gametic disequilibrium and a χ^2 test, 44
 - Physical linkage*, 45
 - Natural selection*, 46
 - Interact box 2.5 Gametic disequilibrium under both recombination and natural selection, 46

Mutation, 47
Mixing of diverged populations, 47
Mating system, 48
Chance, 48
 Interact box 2.6 Estimating genotypic disequilibrium, 49
 Chapter 2 review, 50
 Further reading, 50
 Problem box answers, 51

3 Genetic drift and effective population size, 53
 3.1 The effects of sampling lead to genetic drift, 53
 Interact box 3.1 Genetic drift, 58
 3.2 Models of genetic drift, 58
The binomial probability distribution, 58
 Problem box 3.1 Applying the binomial formula, 60
 Math box 3.1 Variance of a binomial variable, 62
Markov chains, 62
 Interact box 3.2 Genetic drift simulated with a Markov chain model, 65
 Problem box 3.2 Constructing a transition probability matrix, 66
The diffusion approximation of genetic drift, 67
 3.3 Effective population size, 73
 Problem box 3.3 Estimating N_e from information about N , 77
 3.4 Parallelism between drift and inbreeding, 78
 3.5 Estimating effective population size, 80
 Interact box 3.3 Heterozygosity, and inbreeding over time in finite populations, 81
Different types of effective population size, 82
 Problem box 3.4 Estimating N_e from observed heterozygosity over time, 85
Breeding effective population size, 85
Effective population sizes of different genomes, 87
 3.6 Gene genealogies and the coalescent model, 87
 Math box 3.2 Approximating the probability of a coalescent event with the exponential distribution, 93
 Interact box 3.4 Build your own coalescent genealogies, 94
 3.7 Effective population size in the coalescent model, 96
 Interact box 3.5 Simulating gene genealogies in populations with different effective sizes, 97
Coalescent genealogies and population bottlenecks, 98
Coalescent genealogies in growing and shrinking populations, 99
 Interact box 3.6 Coalescent genealogies in populations with changing size, 101
 Chapter 3 review, 101
 Further reading, 102
 Problem box answers, 103

4 Population structure and gene flow, 105
 4.1 Genetic populations, 105
 Method box 4.1 Are allele frequencies random or clumped in two dimensions?, 110
 4.2 Direct measures of gene flow, 111
 Problem box 4.1 Calculate the probability of a random haplotype match and the exclusion probability, 111
 Interact box 4.1 Average exclusion probability for a locus, 117
 4.3 Fixation indices to measure the pattern of population subdivision, 118
 Problem box 4.2 Compute F_{IS} , F_{ST} , and F_{IT} , 122
 Method box 4.2 Estimating fixation indices, 124

- 4.4 Population subdivision and the Wahlund effect, 124
 - Interact box 4.2 Simulating the Wahlund effect, 127
 - Problem box 4.3 Account for population structure in a DNA-profile match probability, 130
- 4.5 Models of population structure, 131
 - Continent-island model, 131*
 - Interact box 4.3 Continent-island model of gene flow, 134
 - Two-island model, 134*
 - Infinite island model, 135*
 - Interact box 4.4 Two-island model of gene flow, 136
 - Math box 4.1 The expected value of F_{ST} in the infinite island model, 138
 - Problem box 4.4 Expected levels of F_{ST} for Y-chromosome and organelle loci, 139
 - Interact box 4.5 Finite island model of gene flow, 139
 - Stepping-stone and metapopulation models, 141*
- 4.6 The impact of population structure on genealogical branching, 142
 - Combining coalescent and migration events, 143*
 - The average length of a genealogy with migration, 144*
 - Interact box 4.6 Coalescent events in two demes, 145
 - Math box 4.2 Solving two equations with two unknowns for average coalescence times, 148

Chapter 4 review, 149
 Further reading, 150
 Problem box answers, 151

5 Mutation, 154

- 5.1 The source of all genetic variation, 154
- 5.2 The fate of a new mutation, 160
 - Chance a mutation is lost due to Mendelian segregation, 160*
 - Fate of a new mutation in a finite population, 162*
 - Interact box 5.1 Frequency of neutral mutations in a finite population, 163
 - Geometric model of mutations fixed by natural selection, 164*
 - Muller's Ratchet and the fixation of deleterious mutations, 166*
 - Interact box 5.2 Muller's Ratchet, 168
- 5.3 Mutation models, 168
 - Mutation models for discrete alleles, 169*
 - Interact box 5.3 R_{ST} and F_{ST} as examples of the consequences of different mutation models, 172
 - Mutation models for DNA sequences, 172*
- 5.4 The influence of mutation on allele frequency and autozygosity, 173
 - Math box 5.1 Equilibrium allele frequency with two-way mutation, 176
 - Interact box 5.4 Simulating irreversible and bi-directional mutation, 177
- 5.5 The coalescent model with mutation, 178
 - Interact box 5.5 Build your own coalescent genealogies with mutation, 181

Chapter 5 review, 183
 Further reading, 183

6 Fundamentals of natural selection, 185

- 6.1 Natural selection, 185
 - Natural selection with clonal reproduction, 185*
 - Problem box 6.1 Relative fitness of HIV genotypes, 189
 - Natural selection with sexual reproduction, 189*
- 6.2 General results for natural selection on a diallelic locus, 193
 - Math box 6.1 The change in allele frequency each generation under natural selection, 194
 - Selection against a recessive phenotype, 195*
 - Selection against a dominant phenotype, 196*

General dominance, 197
Heterozygote disadvantage, 198
Heterozygote advantage, 198
The strength of natural selection, 199
Math box 6.2 Equilibrium allele frequency with overdominance, 200
6.3 How natural selection works to increase average fitness, 200
Average fitness and rate of change in allele frequency, 201
Problem box 6.2 Mean fitness and change in allele frequency, 203
The fundamental theorem of natural selection, 203
Interact box 6.1 Natural selection on one locus with two alleles, 203
Chapter 6 review, 206
Further reading, 206
Problem box answers, 206

7 Further models of natural selection, 208

7.1 Viability selection with three alleles or two loci, 208
Natural selection on one locus with three alleles, 209
Problem box 7.1 Marginal fitness and Δp for the *Hb C* allele, 211
Interact box 7.1 Natural selection on one locus with three or more alleles, 211
Natural selection on two diallelic loci, 212
7.2 Alternative models of natural selection, 216
Natural selection via different levels of fecundity, 216
Natural selection with frequency-dependent fitness, 218
Natural selection with density-dependent fitness, 219
Math box 7.1 The change in allele frequency with frequency-dependent selection, 219
Interact box 7.2 Frequency-dependent natural selection, 220
Interact box 7.3 Density-dependent natural selection, 222
7.3 Combining natural selection with other processes, 222
Natural selection and genetic drift acting simultaneously, 222
Interact box 7.4 The balance of natural selection and genetic drift at a diallelic locus, 224
The balance between natural selection and mutation, 225
Interact box 7.5 Natural selection and mutation, 226
7.4 Natural selection in genealogical branching models, 226
Directional selection and the ancestral selection graph, 227
Problem box 7.2 Resolving possible selection events on an ancestral selection graph, 230
Genealogies and balancing selection, 230
Interact box 7.6 Coalescent genealogies with directional selection, 231
Chapter 7 review, 232
Further reading, 233
Problem box answers, 234

8 Molecular evolution, 235

8.1 The neutral theory, 235
Polymorphism, 236
Divergence, 237
Nearly neutral theory, 240
Interact box 8.1 The relative strengths of genetic drift and natural selection, 241
8.2 Measures of divergence and polymorphism, 241
Box 8.1 DNA sequencing, 242
DNA divergence between species, 242
DNA sequence divergence and saturation, 243
DNA polymorphism, 248

8.3 DNA sequence divergence and the molecular clock, 250
Interact box 8.2 Estimating π and S from DNA sequence data, 251
Dating events with the molecular clock, 252
Problem box 8.1 Estimating divergence times with the molecular clock, 254

8.4 Testing the molecular clock hypothesis and explanations for rate variation in molecular evolution, 255
The molecular clock and rate variation, 255
Ancestral polymorphism and Poisson process molecular clock, 257
Math box 8.1 The dispersion index with ancestral polymorphism and divergence, 259
Relative rate tests of the molecular clock, 260
Patterns and causes of rate heterogeneity, 261

8.5 Testing the neutral theory null model of DNA sequence evolution, 265
HKA test of neutral theory expectations for DNA sequence evolution, 265
MK test, 267
Tajima's D, 269
Problem box 8.2 Computing Tajima's D from DNA sequence data, 271
Mismatch distributions, 272
Interact box 8.3 Mismatch distributions for neutral genealogies in stable, growing, or shrinking populations, 274

8.6 Molecular evolution of loci that are not independent, 274
Genetic hitch-hiking due to background or balancing selection, 278
Gametic disequilibrium and rates of divergence, 278

Chapter 8 review, 279
Further reading, 280
Problem box answers, 281

9 Quantitative trait variation and evolution, 283

9.1 Quantitative traits, 283
Problem box 9.1 Phenotypic distribution produced by Mendelian inheritance of three diallelic loci, 285
Components of phenotypic variation, 286
Components of genotypic variation (V_G), 288
Inheritance of additive (V_A), dominance (V_D), and epistasis (V_I) genotypic variation, 291
Genotype-by-environment interaction ($V_{G\times E}$), 292
Additional sources of phenotypic variance, 295
Math box 9.1 Summing two variances, 296

9.2 Evolutionary change in quantitative traits, 297
Heritability, 297
Changes in quantitative trait mean and variance due to natural selection, 299
Estimating heritability by parent–offspring regression, 302
Interact box 9.1 Estimating heritability with parent–offspring regression, 303
Response to selection on correlated traits, 304
Interact box 9.2 Response to natural selection on two correlated traits, 306
Long-term response to selection, 307
Interact box 9.3 Response to selection and the number of loci that cause quantitative trait variation, 309
Neutral evolution of quantitative traits, 313
Interact box 9.4 Effective population size and genotypic variation in a neutral quantitative trait, 314

9.3 Quantitative trait loci (QTL), 315
QTL mapping with single marker loci, 316
Problem box 9.2 Compute the effect and dominance coefficient of a QTL, 321
QTL mapping with multiple marker loci, 322

Problem box 9.3 Derive the expected marker-class means for a backcross mating design, 324	
<i>Limitations of QTL mapping studies, 325</i>	
<i>Biological significance of QTL mapping, 326</i>	
Interact box 9.5 Effect sizes and response to selection at QTLs, 328	
Chapter 9 review, 330	
Further reading, 330	
Problem box answers, 331	
10 The Mendelian basis of quantitative trait variation, 334	
10.1 The connection between particulate inheritance and quantitative trait variation, 334	
<i>Scale of genotypic values, 334</i>	
Problem box 10.1 Compute values on the genotypic scale of measurement for <i>IGF1</i> in dogs, 335	
10.2 Mean genotypic value in a population, 336	
10.3 Average effect of an allele, 337	
Math box 10.1 The average effect of the A_1 allele, 339	
Problem box 10.2 Compute the allele average effect of the <i>IGF1</i> A_2 allele in dogs, 341	
10.4 Breeding value and dominance deviation, 341	
Interact box 10.1 Average effects, breeding values, and dominance deviations, 345	
<i>Dominance deviation, 345</i>	
10.5 Components of total genotypic variance, 348	
Interact box 10.2 Components of total genotypic variance, V_G , 350	
Math box 10.2 Deriving the total genotypic variance, V_G , 350	
10.6 Genotypic resemblance between relatives, 351	
Chapter 10 review, 354	
Further reading, 354	
Problem box answers, 355	
11 Historical and synthetic topics, 356	
11.1 Historical controversies in population genetics, 356	
<i>The classical and balance hypotheses, 356</i>	
<i>How to explain levels of allozyme polymorphism, 358</i>	
<i>Genetic load, 359</i>	
Math box 11.1 Mean fitness in a population at equilibrium for balancing selection, 362	
<i>The selectionist/neutralist debates, 363</i>	
11.2 Shifting balance theory, 366	
<i>Allele combinations and the fitness surface, 366</i>	
<i>Wright's view of allele-frequency distributions, 368</i>	
<i>Evolutionary scenarios imagined by Wright, 369</i>	
<i>Critique and controversy over shifting balance, 372</i>	
Chapter 11 review, 374	
Further reading, 374	
Appendix, 376	
Statistical uncertainty, 376	
Problem box A.1 Estimating the variance, 378	
Interact box A.1 The central limit theorem, 379	
Covariance and correlation, 380	
Further reading, 382	
Problem box answers, 382	
References, 383	
Index, 396	