

Contents

3.4 The relationship between structure, composition and properties of endospores	46
3.5 Diversity of endospore-forming bacteria	51
3.6 Speculations on the biological role of endospores	54
4 The molecular biology of sporulation of <i>Bacillus subtilis</i> : G. H. CHAMBLISS	
4.1 Introduction	57
4.2 Genetics of bacterial sporulation	57
4.3 Initiation of bacterial sporulation	59
4.3.1 Repressor of sporulation	62
4.3.2 Possible inducers of sporulation	63
4.4 Regulation of gene expression during sporulation	64
4.4.1 Transcriptional regulation	65
4.4.2 Translational regulation	68
4.5 Conclusions and future prospects	70
5 Sphere-rod transitions in <i>Arhrobacter</i> : J. B. CLARK	
5.1 Introduction	73
5.2 Taxonomy and description of the genus	73
5.3 Role in nature	74
5.4 Description of the morphogenetic cycle	76
5.5 Nutritional control of the cycle	77
5.6 Changes during the morphogenetic cycle	78
5.6.1 Fine structure studies	79
5.6.2 Cell wall composition	80
5.6.3 Flagella	81
5.6.4 Macromolecular synthesis	82
5.6.5 Antigenicity	83
5.6.6 Lipid content	84
5.6.7 Phage susceptibility	84
5.7 Metabolic and enzyme studies and control	85
5.7.1 Carbohydrate metabolism	85
5.7.2 Enzyme regulation	86
5.7.4 tRNA methylase	86
5.7.4 Phosphofructokinase	87
5.8 Control of gene expression	88
5.8.1 mRNA hybridization studies	88
5.8.2 Mutational studies	88
5.9 Role of cyclic AMP	89
5.10 Role of the membrane	90
5.11 Conclusion	91
6 Streptomyces: K. F. CHATER AND M. J. MERRICK	
6.1 Introduction	93
6.1.1 What are streptomyces?	93
6.1.2 Why do streptomyces exhibit such a complex colonial morphology?	93
6.1.3 Antibiotics and differentiation	95
6.1.4 <i>Streptomyces</i> genetics	96
6.1.5 <i>Streptomyces coelicolor</i> pigments and antibiotics	97

6.2 Analysis of the normal process of development	98
6.2.1 Spore germination and vegetative growth	98
6.2.2 Formation of the aerial hyphae	100
6.2.3 Development of aerial hyphae into spore chains	106
6.2.4 Interactions between <i>bld</i> and <i>whi</i> mutants	112
6.3 Indirect probes of the control of gene expression during development	113
6.4 Conclusions and prospects	114
7 The intraperiplasmic growth cycle—the life style of the Bdellovibrios: M. F. THOMASHOW AND S. C. RITTENBERG	
7.1 Descriptive biology of the bdellovibrios	115
7.1.1 Introduction	115
7.1.2 General description	116
7.1.3 Methods	120
7.2 Bdellovibrio attack on the substrate cell	121
7.2.1 Search and attachment	121
7.2.2 Penetration and the formation of the stabilized bdelloplast	123
7.2.3 Early alterations of the substrate cell	128
7.2.4 Regulated degradation of the macromolecules of the substrate cell	129
7.3 Development of bdellovibrios	130
7.3.1 Growth <i>per se</i>	130
7.3.2 Precursors for synthesis of bdellovibrio macromolecules	131
7.3.3 Fragmentation of the bdellovibrio and lysis of the bdelloplast wall	134
7.3.4 Efficiency of intraperiplasmic growth	136
8 Prosthecate bacteria: C. S. DOW AND R. WHITTENBURY	
8.1 Introduction	139
8.1.1 What are prosthecate bacteria?	139
8.1.2 What is the functional role(s) of the prostheca?	142
8.2 Growth	147
8.2.1 Unidirectional polar growth—'budding'	147
8.2.2 Cell cycles of the prosthecate bacteria	148
8.3 Morphogenesis and differentiation	151
8.3.1 Basic requirements of a prosthecate bacterium to be used as a model for morphogenesis and differentiation studies	151
8.3.2 <i>Caulobacter</i> morphogenesis and differentiation	152
8.3.3 <i>Rhodomicrobiun vannielii</i>	159
9 Differentiation in filamentous cyanobacteria: N. G. CARR	
9.1 Cyanobacteria involved in cellular differentiation	167
9.2 Organization of genetic information	169
9.2.1 Structure	169
9.2.2 Mutants and mapping	169
9.2.3 Genome size	170
9.3 Heterocysts	171
9.3.1 Structure	171
9.3.2 Function	175
9.3.3 Metabolism	179
9.3.4 Differentiation	182

9.4 Akinetes	187
9.4.1 Structure	187
9.4.2 Metabolism	189
9.4.3 Development and germination	190
9.5 Other modifications of cell shape	193
9.5.1 Tapered cells	193
9.5.2 Branched filaments	193
9.6 Pattern formation	194
 10 Developmental patterns of pleurocapsalean cyanobacteria: J. B. WATERBURY	
10.1 Introduction	203
10.2 Methods for studying pleurocapsalean development	204
10.3 General features of development	205
10.4 Cell wall structure and its role in growth and development	205
10.4.1 Wall structure	205
10.4.2 The role of the fibrous outer wall layer during binary and multiple fission	207
10.4.3 Baeocyte release	209
10.4.4 Baeocyte movement	209
10.4.5 Baeocyte attachment	209
10.5 Specific patterns of development	209
10.5.1 <i>Dermocarpa</i> and <i>Xenococcus</i>	211
10.5.2 <i>Dermocarpella</i>	214
10.5.3 <i>Myxosarcina</i> and <i>Chroococcidiopsis</i>	218
10.5.4 The Pleurocapsa group	221
10.6 Comparison of pleurocapsalean developmental cycles	226
 11 Myxobacteria: J. H. PARISH	
11.1 General biology	227
11.1.1 Introduction	227
11.1.2 Habitats, isolation methods and ecology	227
11.1.3 Taxonomy	229
11.1.4 Life cycles	232
11.2 Structure, physiology and biochemistry	235
11.2.1 Composition of vegetative cells	235
11.2.2 Nutrition and metabolism	237
11.2.3 Motility	239
11.3 Genetics of myxococci	231
11.3.1 Genomic complexity	241
11.3.2 Phages	241
11.3.3 Drug resistance and fertility factors	244
11.3.4 Phase variation	244
11.4 Cellular morphogenesis	245
11.4.1 Induction	245
11.4.2 The myxospore capsule	245
11.4.3 The biochemistry of myxospore induction	246
11.4.4 Germination	248
11.5 Cell-cell interactions	248
11.5.1 Aggregation	249
11.5.2 Fruiting body formation	251

12 Conclusion: J. H. PARISH	
12.1 Towards a molecular understanding	255
12.2 Future prospects	258
References	259
Index	285

N.G. CARR Department of Biochemistry, University of Liverpool,
P.O. Box 147, Liverpool L69 3BX, U.K.

G.H. CHAMBLISS Department of Bacteriology, University of
Wisconsin,

500 Lincoln Drive, Madison, Wisconsin 53706, U.S.A.

K.F. CHATER John Innes Research Institute, Colney Lane,
Norwich NR4 7UH, U.K.

J.B. CLARK Department of Botany and Microbiology,
University of Oklahoma, 770 Van Vleet Oval,
Norman, Oklahoma 73049, U.S.A.

W.D. DONACHIE Department of Molecular Biology,
University of Edinburgh, King's Buildings, Mayfield Road
Edinburgh EH9 3JR, U.K.

G.S. DOW Department of Biological Sciences, University of
Coventry, Warwickshire CV4 7AL, U.K.

R.S. ELANSON Department of Bacteriology, University of
Wisconsin
500 Lincoln Drive, Madison, Wisconsin 53706, U.S.A.

M.J. MERRICK John Innes Research Institute, Colney Lane,
Norwich NR4 7UH, U.K.

J.H. PARISH Department of Biochemistry, University of
Leeds LS2 9JT, U.K.

S.C. RITTENBERG Department of Bacteriology, University of
California,
Los Angeles, California 90024, U.S.A.

M.F. THOMAS Department of Bacteriology, University of
Washington,
Seattle, Washington 98195, U.S.A.

J.B. WATERBURY Woods Hole Oceanographic Institution,
Woods Hole, Massachusetts 02543, U.S.A.

R. WHITTENBURY Department of Biological Sciences,
University of Warwick, Coventry,
Warwickshire CV4 7AL, U.K.