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Prologue

 

In this book, thorough reviews of existing knowledge in connection with ionic
polymeric conductor nanocomposites (IPCNCs)—including ionic polymeric metal
nanocomposites (IPMNCs) as biomimetic distributed nanosensors, nanoactuators,
nanotransducers, nanorobots, artificial muscles, and electrically controllable intelli-
gent polymeric network structures—are presented. Two brief introductory appendi-
ces on biological muscles are also presented to offer short reviews of how biological
muscles work, how biomimetic actuator materials in general have been developed
based on biological muscles, and how the latter are limited in their performance
compared with biological muscles. This is intended to help provide motivation to
understanding as well as a means of comparison for artificial muscle materials to
be discussed and analyzed in this book.

Where possible, comparisons have been made with biological muscles and
applications in noiseless, biomimetic marine propulsion and unmanned aerial vehi-
cles (UAVs) and flapping-wing systems using such electroactive polymeric materials.
Furthermore, the book introduces and discusses in detail methods of fabrication and
manufacturing of several electrically and chemically active ionic polymeric sensors,
actuators, and artificial muscles, such as polyacrylonitrile (PAN), poly(2-acrylamido-
2-methyl-1-propanesulfonic) acid (PAMPS), and polyacrylic-acid-

 

bis

 

-acrylamide
(PAAM), as well as a new class of electrically active composite muscles such as
IPCNCs or IPMNCs. These discoveries have resulted in seven U.S. patents regarding
their fabrication and application capabilities as distributed biomimetic nanoactuators,
nanosensors, nanotransducers, nanorobots, and artificial muscles.

In this book, various methods of IPMNC manufacturing and fabrication are
reported. In addition, manufacturing and characterization of PAN muscles are dis-
cussed. Conversion of chemical activation to electrical activation of artificial muscles
using chemical plating techniques is described. Furthermore, other methodologies,
such as physical/chemical vapor deposition methods or physical loading of a conduc-
tor phase into near boundary of such materials, are briefly discussed. The technologies
associated with pH-activated muscles like PAN fibers have also been detailed. Exper-
imental methods are described to characterize contraction, expansion, and bending
of various actuators using isometric, isoionic, and isotonic characterization methods.

Several apparatuses for modeling and testing the various artificial muscles have
been described to show the viability of application of chemoactive as well as elec-
troactive muscles. Furthermore, fabrication methods of PAN fiber muscles in differ-
ent configurations (such as spring-loaded fiber bundles, biceps, triceps, ribbon-type
muscles, and segmented fiber bundles) to make a variety of biomimetic nanosensors
and nanoactuators have been reported here.

Theories, modeling, and numerical simulations associated with ionic polymeric
artificial muscles’ electrodynamics and chemodynamics have been discussed, analyzed,
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and modeled for the manufactured material. The book concludes with an extensive
chapter on all current industrial and medical applications of IPMNCs as distributed
biomimetic nanosensors, nanoactuators, nanotransducers, nanorobots, and artificial
muscles.

 

Mohsen Shahinpoor
Kwang J. Kim

Mehran Mojarrad
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3.53 A schematic process illustration of the PLI-IPMNCs (left) and silver particle used 
(right). (Shahinpoor, M. and K. J. Kim. 2002. In 

 

Proceedings of SPIE 9th annual 
international symposium on smart structures and materials.

 

 SPIE publication no. 
4695, paper no. 36.)

108

3.54 SEM micrograph of IPMNC and (a) its close-up and (b) x-ray line scan (c), 
respectively. The silver penetration is about 7–8 

 

µ

 

m for this sample and the 
majority of silver particulates are in tack within the ion-exchange polymer.

109

3.55 SEM micrograph showing Ag surface properly electroded and composited on to 
an ion-exchange polymer.

109

3.56 Force response characteristics of the IPMNC made by the physically loaded 
technique (top: 1-V responses and bottom: 1.5-V responses, respectively). The 
blocking force, 

 

F

 

b

 

, was measured at the tip of the cantilever configuration with 
slightly preloaded conditions of 0.27 and 0.32 g, respectively.

110

3.57 Various IPMNCs with three-dimensional shapes. 112
3.58 The IPMNCs made with solution recast Nafion. Top two photos show the fabricated 

eight-finger IPMNC (

 

Octopus-IPMNC

 

). It (2-mm thickness) can easily sustain the 
eight U.S. quarters. (Note that a U.S. quarter has a mass of 5.3 g.) The diameter 
of this IPMNC is approximately 10.5 cm. The electrode is centered. The middle 
and bottom photographs show the IPMNC in action without applying load and 
with a load. As can be seen, a quarter is lifted. The time internal between the 
frames is approximately 1 sec. A step voltage of 2.8 V was applied (

 

E

 

 = 1.4 
V/mm). These IPMNCs were manufactured by typical metal-reducing techniques. 
Platinum was composited initially and gold was plated later. The cation is Li+.

113

3.59 An illustrative process diagram for the ion-conducting, powder-coated electrode 
made by the solution recasting method. First, the ion-conducting powder (i.e., 
carbon, silver, platinum, palladium, gold, copper, and any other conducting 
powders) is mixed with the electroactive polymer solution (e.g., liquid Nafion). 
The powder is fine and uniformly dispersed within the electroactive polymer 
solution. After a formation of a thin layer, the electroactive polymer solution 
undergoes the drying process of solvents and therefore the residual consists of the 
ion-conducting powder dispersed within the polymer. Second, the electroactive 
polymer solution (without the powder) is added on top of the layer of the ion-
conducting powder and dried. This is repeated until the desired thickness is 
obtained. Later, a layer of the ion-conducting powder is formed by the same 
method described previously. As a final step, the ion-conducting, powder-coated 
electrode is cured under the elevated temperature. If necessary, the surface 
conductivity can be enhanced by adding a thin layer of novel metal via 
electroplating or electroless plating.

114

3.60 Tensile testing results (normal stress, 

 

σ

 

N

 

, vs. normal strain, 

 

ε

 

N

 

). Note that both 
samples were fully hydrated when they were tested. (a) Solution recast membrane; 
(b) as-received membrane.

115

3.61 Force responses of the solution recast IPMNC sample (top) and its conjugated graph 
showing tip displacement 

 

δ

 

T

 

 versus blocking force, 

 

F

 

T

 

 (bottom). Note that the 
frequency is 0.5 Hz and step voltages of 2, 4, and 6 V were applied.

116

3.62 Thermodynamic efficiency of the IPMNC as a function of frequency. 117
3.63 Force characteristics and input power consumptions of IPMNCs (conventional 

IPMNC and pyrrole-treated IPMNC). Polymerization of pyrrole was carried with 
the presence of a catalyst within the base polymer Nafion.

118
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4.1 Assortment of pH muscles made from PAN fibers. Clockwise from left: 
encapsulated biceps muscle, triceps muscle, linear fiber bundle, linear platform 
muscle, encapsulated fiber bundle, and parallel fiber muscles.

121

4.2 Two PAN muscles (50-fiber bundles) encapsulated with latex membrane 
incorporating three-way glass fittings at each end to allow for the transport of pH 
solutions within the fiber bundles (relaxed length is 3 in.).

121

4.3 Single 100-fiber bundle encapsulated PAN muscle with three-way fittings designed 
especially for transport of pH solution and water within the fiber bundle (relaxed 
length is 6 in.).

122

4.4 Isotonic (left) and isoionic (right) test fixtures for PAN fiber artificial muscles. 123
4.5 Schematic diagram of the isoionic test fixture. 123
4.6 Isoionic test fixture shown with a 25-fiber bundle PAN muscle. 124
4.7 PAN (before activation) heated at 220

 

°

 

C for 1 h, 15 min. 125
4.8 Annealed PAN (close-up). 125
4.9 Annealed PAN, a single fiber (close-up). Its surface shows a texture that is believed 

to be an oxidized state of the fiber.
125

4.10 Activated PAN at a low-pH condition (1 

 

N

 

 HCl). 126
4.11 Activated PAN at a low-pH condition (1 

 

N

 

 HCl). 126
4.12 Activated PAN at a low-pH condition (1 

 

N

 

 HCl). 126
4.13 Activated PAN at a low-pH condition (1 

 

N

 

 HCl). 127
4.14 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH). 127
4.15 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH). 128
4.16 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH). 128
4.17 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH). 128
4.18 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH) (close-up). 129
4.19 Activated PAN at a high-pH condition (1 

 

N

 

 NaOH). 129
4.20 Raw nano-PAN fibers. 129
4.21 Raw nano-PAN fibers (close-up). 130
4.22 Activated nano-PAN at a low-pH condition (1 

 

N

 

 HCl). 130
4.23 Activated nano-PAN at a low-pH condition (1 

 

N

 

 HCl) (close-up). 131
4.24 Activated nano-PAN at a high-pH condition (1 

 

N

 

 NaOH). 131
4.25 Activated nano-PAN at a high-pH condition (1 

 

N

 

 NaOH) (close-up). 132
4.26 PAN fiber length change (lithium hydroxide and HCl). 132
4.27 PAN fiber length change (potassium hydroxide and HCl). 132
4.28 PAN fiber length change (sodium hydroxide and HCl). 133
4.29 PAN elongation behavior explained by the osmotic behavior. 133
4.30 Thin wires used as effective spring electrode. 134
4.31 A PAN electrification configuration using a thin wire electrode and 

countermembrane electrode.
134

4.32 Photographs of experimental setup. 138
4.33 Electric activation of PAN fibers (LiOH) in NaCl. 139
4.34 Electric activation of PAN fibers (LiOH) in NaOH. 140
4.35 Electric activation of PAN fibers (NaOH) in NaCl. 141
4.36 A PAN electrification configuration using a thin wire electrode and 

countermembrane electrode.
141

4.37 PAN actuator system design. 142
4.38 Rubber boots. 142
4.39 Spring electrodes. Left: uncoated; right: gold coated. 143
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4.40 Results of LiOH PAN activated in 0.1 

 

N

 

 HCl. 144
4.41 Previous results of LiOH PAN activated in 0.1 

 

N

 

 NaCl. 145
4.42 Electrical activation of real (pure) PAN fibers in 0.1 

 

N

 

 NaCl. 145
4.43 Electrical activation of regular PAN fibers in 0.1 

 

N

 

 NaCl. 146
4.44 PAN film cast after cross-linking. 146
4.45 A concept drawing of PAN muscle system (left) and fabricated model (right). 146
4.46 Annealed (cross-linked) PAN fibers. 147
4.47 Looped PAN fiber bundle. 147
4.48 Bottom and top caps. The bottom cap (left) places a magnetic stirrer that stirs the 

solution during the electric polarity change.
148

4.49 Revised design of PAN muscle system (left) and a fabricated model (right). 149
4.50 Raw PAN fiber (left) and activated PAN fiber (right). 149
4.51 A PAN muscle system under an electric field: initial (left) and after 15 min (right). 150
4.52 PAN fiber displacement in a HCl solution (1 

 

M

 

): initial (left) and after 15 min 
(right) positions.

150

4.53 Horizontal self-powered pH meter equipped with PAN fibrous muscle fibers and a 
resilient rotating cylinder.

150

4.54 Vertical self-powered pH meters equipped with PAN fibrous artificial muscles and 
a resilient rotating cylinder.

151

4.55 Vertical pH meter assembly made from a parallel type PAN fiber muscle and a 
specially designed container holding the fluid with unknown pH to be determined.

151

4.56 Linear pH meter using a graduated cylinder with calibrated PAN fiber bundle. 152
4.57 Circulatory system assembly pumping pH solutions into a biceps PAN artificial 

muscle.
153

4.58 PAN biceps muscle shown in a test apparatus consisting of a multichannel pump, 
microcontroller board, solenoid valves, and a desktop PC to activate a skeletal 
forearm.

153

4.59 Close-up of the attachment of the fabricated biceps PAN muscle on a life-size 
human forearm skeleton showing the controller board housed in the pelvic bone 
area and solenoid valves attached to the humerus and ulna bones, respectively. 
We also designed and built a simple pH meter with PAN fiber bundles using the 
parallel type packaging of the fibers as shown earlier (fig. 4.55). The picture shown 
is a rotary-type pH meter taking up a small space and fairly accurate for most cases.

154

4.60 Linear platform actuator for use in robotics. 154
4.61 Electric PAN muscle apparatus showing gold-plated center rod as one electrode 

and gold-plated spring as the circumferential electrode.
155

4.62 Exploded view of the electric PAN muscle apparatus. 156
4.63 A number of early contractile synthetic chemomechanical muscles. 157
4.64 A possible configuration for the electroactive C-PAN-N artificial muscle in an 

antagonist configuration to provide biceps and triceps (left) similar to the action 
of a sarcomere (right).

158

4.65 Normal stress–strain relationship for the contracted and the expanded state of PAN 
muscles.

160

4.66 Possible structure of activated polyacrylonitrile. 160
4.67 SEM micrographs that show raw fibers (top left), contracted (top right), and 

elongated states (bottom right), respectively. It should be noted that SEM 
micrographs were taken for the dry samples. The elongated PAN fibers show that 
they contain a salt (possibly NaCl).

161
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4.68 Experimental setup for electrical activation of C-PAN artificial sarcomeres and 
muscles. It describes the operating principle of the C-PAN.

162

4.69 Electrical activation of muscle made up of fiber bundle of 50 C-PAN platinum 
fibers. Initial muscle length = 5.0 cm; number of fibers = 50; cell voltage = 20 V; 
current = 120 mA. Polarity of electrodes reversed at 

 

t

 

 = 10 min.

163

4.70 SEM micrograph shows platinum delamination over a number of cycles (right). 163
4.71 SEM micrograph shows the graphite fibers used in this study (left). Each fiber has 

a diameter of 6.4 mm and the configuration of the graphite electrode and PAN 
muscle (right).

164

4.72 Variation of length of 100 C-PAN-G fibers in fiber bundle form with time in a 0.2-
m

 

N

 

 NaCl cell under an imposed electric field (1PAN-2G ratio, 100 fibers).
165

4.73 Variation of length of PAN-graphite muscle with time in a 0.2-m

 

N

 

 NaCl cell under 
a voltage of 20 V (1PAN-2G ratio, 50 fibers).

165

4.74 Electrical activation of C-PAN made with single PAN graphite fibers of 2,000 
strands.

166

4.75 Variation of length of C-PAN-G strands of 10 

 

µ

 

m in diameter with time in a 0.2-
m

 

N

 

 NaCl cell under a voltage of 20 V (1PAN-2G ratio in a special helically wound 
configuration).

166

4.76 Conventional PAN fibers. The fiber diameter is 8–10 

 

µ

 

m. 167
4.77 Spun PAN nanofibers. Average fiber diameter is approximately 300–600 nm. 167
4.78 PAN elongation behavior explained by the osmotic behavior and PAN fibers in 

different states. Top left: neutral state; top right: under alkaline solutions. 
Therefore, if pure water is in contact with alkaline PAN, there will be an osmotic 
pressure driven water in flux. Bottom left: oxidized PANs (prior to activation); 
bottom middle: at low pH, contracted PAN (1 

 

N

 

 HCl); bottom right: at high pH, 
expanded PAN (1 

 

N

 

 LiOH).

168

4.79 Raw PAN fibers. 169
4.80 After oxidation (cross-linked)—before activation. 169
4.81 Spun PAN nanofibers. (a) A Phillips XL30 ESEM using an accelerating voltage of 

10 kV was employed to take this SEM photograph; (b) ESEM image of the 
polyacrylonitrile nanofibers spun at 1 kV/cm; (c) PAN nanofibers (~300 nm 
diameter). Hitachi 4700 was used (an acceleration voltage of 3 kV).

170

4.82 NMR spectrum of PAN processed fibers. 171
4.83 Schematic of the electrospinning process. 172
4.84 Photographs of viscous polymer solution suspended at a capillary tip with (a) no 

applied potential and (b) just above the critical voltage.
173

4.85 A PAN actuator system. 174
4.86 The exchange of counter-ions and surrounding solvent. 175
4.87 Experimental setup for electrical activation of PAN fibers. 179
4.88 Previous (left) and new (right) PAN actuating systems. 180
4.89 Erosion of the electrode used after the operation. 181
4.90 The new PAN system produced a 5-mm displacement (a generative force of 50 gf). 181
4.91 An expanded state of the PAN fiber. 183
4.92 An electrically induced, contracted state of the PAN fiber. 183
4.93 A chemically induced, contracted state of PAN fiber (at 2 

 

N

 

 HCl). 183
4.94 A micrograph of a PAN raw fiber. 184
4.95 A micrograph of an oxy-PAN (after heat treatment). 184
4.96 Braided PAN bundle in an expanded state. 185
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4.97 Dimensional changes of the electrochemical cell system. 185
4.98(a) Straight PAN fiber bundle muscle with end hooks. 186
4.98(b) Looped PAN muscle. 186
4.99 Braided PAN fiber actuator test: initial (left) and after 25 min (right). 186
4.100 Spring for small-scale PAN fiber test. 187
4.101 Small-scale PAN fiber test with resilient springs. 187
4.102 A fabricated small-scale PAN system. 188
4.103 Initial length (left) and contracted length (right). 188
4.104 Force with time variations. Acid activated: baseline condition (actuated at pH of 1 

 

N

 

 HCl); E-activated2: sample 1 electrically actuated; E-activated1: sample 2 
electrically actuated.

189

4.105 Load cell setup to measure the generative force of PAN muscle (top). Single PAN 
fiber adhered to two screw bolts before test (bottom left) and after test (bottom right).

190

4.106 The modified test setup (left) and fiber bundle (right). 190
4.107 Force generation depending upon time with voltage change. 191
4.108 Force changes from switching polarity. 192
4.109 Load cell sensor to measure the force of PAN muscle: front view (left) and side 

view (right).
192

4.110 Single fiber force curve under 5-V electric field. 193
4.111 PAN fiber length (before test: 170 mm [left]; after test 165 mm [right]), under 5 V. 193
4.112 PAN fiber length (before test: 175 mm [left]; after test: 170 mm [right], under 7 V. 194
4.113 Force, current, and temperature versus time, under 7 V. 195
4.114 Force, current, and temperature versus time, under 5 V. 196
4.115 Force generation depending upon time, under 3 V. 197
4.116 Force changes from switching polarity. 198
4.117 Force versus displacement, under 7 V. 198
4.118 Force versus displacement, under 5 V. 199
4.119 Computer simulation (solid lines) and experimental results (scattered points) for 

the time profiles of relative weight of the gel sample for various degrees of 
swelling 

 

q

 

.

202

4.120 Experimental result taken from direct measurement of a sample PAMPS muscle. 
(Gong, J. P. and Y. Osada. 1994. In preprints of the 

 

Sapporo symposium on 
intelligent polymer gels,

 

 21–22; Gong, J. et al. 1994. In 

 

Proceedings of the 
international conference on intelligent materials,

 

 556–564.)

202

4.121 Woven fabric forms of PAN muscles. 203
4.122 Electrochemical test setup. 204
4.123(a) Force versus time curve with 0.01 

 

M

 

 HCl. 205
4.123(b) Force versus time curve with 00.1 

 

M

 

 HCl. 205
4.124(a) Force versus time curve with 0.5 

 

M

 

 HCl. 205
4.124(b) Force versus time curve with 1 

 

M

 

 HCl. 206
4.125 Force versus time curve with 2 

 

M

 

 HCl. 206
4.126 Force curve under 0.01 

 

N

 

 of HNO

 

3

 

 (left) and H

 

2

 

SO

 

4

 

 (right). 207
4.127 Force curve under 0.1 

 

N

 

 of HNO

 

3

 

 (left) and H

 

2

 

SO

 

4

 

 (right). 207
4.128 Force curve under 0.5 

 

N

 

 of HNO

 

3

 

 (left) and H

 

2

 

SO

 

4

 

 (right). 208
4.129 Force curve under 0.5 N of HNO3 (left) and H2SO4 (right). 208
4.130 Fatigue confirmation test with 1 N HCl (left) and 1 N HNO3 (right) after sulfuric 

and nitric acid test.
208

4.131 Single PAN fiber tensile machine setup. 209
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4.132 New electrodes for anode (left) and cathode (right). 209
4.133 Test apparatus for new electrodes. 210
4.134 New electrodes for anode (left) and cathode (right). 210
4.135 Force generation by HCl 2 M (left) versus 5-V electric field (right). 211
4.136 Dimensions of the robotic finger. 212
4.137 Schematics of PAN muscle hand, original position (upper) and in grab motion 

(bottom).
212

4.138 Initial position of a single PAN finger. 213
4.139 Grab position performance of a single PAN finger. 213
4.140 PAN fiber bundle muscles in action as a single finger. 214
4.141(a) Frontal view of PAN five-fingered hand. 215
4.141(b) Back view of PAN five-fingered hand. 215
4.142(a) Left side view of PAN five-fingered hand. 215
4.142(b) Right side view of PAN five-fingered hand. 216
4.143 Five-fingered hand drawings. 217
4.144 Stress–strain curve of elongation and contraction state of single PAN fiber. 218
4.145 (a) A typical setup for a PAN fiber bundle; (b) Oxidation or contracted mode of a 

PAN fiber bundle; (c) Reduction or expanded mode of a PAN fiber bundle.
219

4.146 Minute PAN fiber change before (left) and after (right) applying 1 M HCl solution. 219
5.1 PAMPS muscle shown in bent state after applying a 30-V DC field. There are two 

gold-plated electrodes at each side of the Teflon (polytetrafluoroethylene, PTFE) 
container.

225

5.2 Deformation of PAMPS ionic gel cylinder due to an imposed radial voltage gradient. 226
5.3 A possible charge redistribution configuration in ionic gels. 227
5.4 Experimental setup for electrically activated optical lens. 231
5.5 Stretching of the swollen zone due to electric field. 231
5.6 Observed deformation of the gel lens under the influence of the electric field. 231
5.7 Actual experimental observation on the deformation of adaptive optical lens under 

electrical control. (From Salehpoor, M. et al. 1996. In Proceedings of the SPIE 
conference on intelligent structures and materials, 2716:36–45.)

232

5.8 Experimental setup for measuring the focal length of the gel lens. 232
5.9 Robotic swimming structure (top) and swimmer with muscle undulation frequency 

of 3 Hz (bottom). The scale shown is in centimeters.
233

6.1 Gel disk swelling problem. 245
6.2 Finite element mesh on gel geometry. 245
6.3 Outer edge radial displacement as a function of time. 246
6.4 Solvent mass fraction at time = 20 sec. 246
6.5 Solvent mass fraction at time = 200 sec. 247
6.6 Solvent mass fraction at time = 500 sec. 247
6.7 Pressure at time = 20 sec. 248
6.8 Pressure at time = 200 sec. 248
6.9 Pressure at time = 500 sec. 249
6.10 Bending of an ionic gel strip due to an imposed electric field gradient. 250
6.11 Geometry of microbending for an elastic strip of ionic gels. 251
6.12 A possible charge redistribution configuration in ionic gels. 253
6.13 Variation of curvature versus cross-capacitance Cg and time t. 261
6.14 Variation of curvature versus cross-resistance Rg and time t. 261
6.15 Variation of curvature versus cross-electric field  and time t. 262
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6.16 Variation of maximum tip deflection δmax versus average cross-capacitance Cg and 
time t.

262

6.17 Variation of maximum tip deflection δmax versus the average electric field  and 
time t.

263

6.18 Variation of maximum tip deflection δmax versus average cross-resistance Rg and 
time t.

263

6.19 Computer simulation (solid lines) and experimental results (scattered points) for 
the time profiles of relative weight of the gel sample for various degrees of 
swelling, q.

267

6.20 Numerical simulation of equation 6.89 by Asaka and Oguro (Asaka, K. and K. 
Oguro. 2000. J. Electroanalytical Chem. 480:186–198.)

268

6.21 Spatial geometry of a local polymer segment with fixed charges. 270
6.22 Nonuniform distribution of Coulomb’s forces along the gel axis. 272
6.23 The simplest solution for a configuration with a few cations before activation. 272
6.24 The simplest solution for a configuration with a few cations after activation. 273
6.25 Force improvement by chemical tweaking showing the effect of changing cations 

from H+ to Na+ to Li+.
276

6.26 Experimental evidence for the effect of different ions and their hydration numbers 
on the tip force and thus deformation of an IPMNC strip.

276

6.27 General structures of an IPMNC or IPCNC film with near-boundary functionally 
graded electrodes and surface electrodes.

279

6.28 Schematics of the electro-osmotic migration of hydrated counter-ions within the 
IPMNC network.

280

6.29 Dynamic sensing of the ionic polymer due to imposed deformation. 281
6.30 Actuation under a low-frequency electric field to minimize the effect of loose water 

back diffusion.
282

6.31 Experimental determination of Onsager coefficient L using three different samples. 283
6.32 Deflection under a step voltage for fully hydrated and semidry samples. Note a 

small back relaxation due to presence of loose water (a) and virtually no back 
relaxation due to absence of loose water (b).

284

6.33 Displacement characteristics of an IPMNC, Tokuyama Neosepta CMX 
(styrene/divinylbenzene-based polymer). δ: arc length; Lo: effective beam length; 
Lo = 1.0 in. (top) and 1.5 in. (bottom).

285

6.34 Displacement characteristics of an IPMNC, ERI-S1. δ: arc length; Lo: effective 
beam length; Lo = 1.0 in. (top) and 1.5 in. (bottom).

286

6.35 Typical deformation of strips (10 × 80 × 0.34 mm) of ionic polymers under a step 
voltage of 4 V.

286

7.1 Successive photographs of an IPMNC strip that shows very large deformation (up 
to 4 cm) in the presence of low voltage. The sample is 1 cm wide, 4 cm long, and 
0.2 mm thick. The time interval is 1 sec. The actuation voltage is 2 V DC.

294

7.2 A typical sensing response of an IPMNC. The IPMNC (5 × 20 × 0.2 mm) in a 
cantilever mode as depicted in figure 7.1 is connected to an oscilloscope and is 
manually flipped to vibrate and come to rest by vibrational damping.

295

7.3 The measured AC impedance characteristics of an IPMNC sample (dimension = 
5-mm width, 20-mm length, and 0.2-mm thickness).

296

7.4 An equivalent electronic circuit for a typical IPMNC strip obtained by an impedance 
analyzer.

297

�
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7.5 Measured surface resistance, Rs, of a typical IPMNC strip, as a function of platinum 
particle penetration depth.

297

7.6 The current, i(t), versus t–1/2 (chronoamperometry data). Note that A = 6.45 cm2 
and E = –3 V.

298

7.7 Equivalent circuit model representing an IPMNC. 299
7.8 An SEM micrograph shows the cross-section of an IPMNC sensor. It depicts a cross-

section (left) of an IPMNC strip, its close-up (right), and the x-ray line scan (bottom).
300

7.9 DC sensing data in terms of produced voltages, ∆E, versus displacement. Note that 
the displacement is shown in terms of the deformed angle relative to standing 
position in degree. The dimension of the sample sensor is 5 × 25 × 0.12 mm.

301

7.10 Accelerometer implementations using PZT in (a) 3–3 mode and (b) 3–1 mode. 302
7.11 Dry IPMNC impedance magnitude. 304
7.12 Dry IPMNC impedance phase. 305
7.13 Wet IPMNC impedance magnitude. 305
7.14 Wet IPMNC impedance phase. 306
7.15 PZT frequency response magnitude. 306
7.16 IPMNC frequency response magnitude. 307
7.17 Typical voltage/current output (a) and power output (b) of IPMNC samples. 309
7.18 Outvoltage due to normal impact of 200-N load on a 2-cm × 2-cm × 0.2-mm 

IPMNC sample.
310

7.19 IPMNC cantilever beam. 310
7.20 Simulink model. 312
7.21 Hypothetical deflection plot. 312
7.22 Beam “lengthening.” 313
7.23 Segmented beam. 313
7.24 Unstretched hypothetical deflection plot. 314
7.25 Deflections due to various moments. 314
7.26 Beam tip step response. 315
7.27 Beam modeling process. 315
7.28 Time history of beam deflection. 317
7.29 “Flapping” beam. 317
7.30 Moment induced by electric field. 318
7.31 Hypothetical moment simplification. 318
7.32 Tip displacement of IPMNC actuator for 1 V. 319
7.33 Experimental closed-loop tip response for 10- × 20-mm IPMNC actuator for a step 

voltage of 1 V.
320

7.34 (a) Fixture for impedance test; (b) Impedance analyzer. 320
7.35 Measured impedance at an input voltage of 0.5 V. 321
7.36 Phase of the electromechanical impedance at 0.5 V. 322
8.1 Simple structures of polyacetylene alternating single and double bonds between 

carbon atoms.
323

8.2 Molecular structure of a simple polypyrrole conductive polymer. 323
8.3 Sketch representing a REDOX reaction of PPy due to the presence of ionic ClO4– 

anions.
325

8.4 REDOX cycle of PANi in HCl aqueous solution. The emeraldine salt is oxidized 
into pernigraniline (PS) salt or reduced into leuco-emeraldine (LS) salt. (Tourillon, 
G. and F. Garnier. 1984. J. Electroanal. Chem. 161:51.)

327
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8.5 Picture showing the actuation mechanism of a molecular actuator based on PT 
chains interconnected with a highly versatile molecule as a calixarene. (Anquetil, 
P. A. et al. 2002. In Proceedings of SPIE smart structures and materials 
symposium, 4695.)

328

9.1 The IPMNC gripper concept (top) and a four-finger gripper (bottom). 330
9.2 The three-dimensional IPMNC actuator concept. 331
9.3 The fabricated IPMNC in a square rod form. 332
9.4 The undulating and morphing actuator made with an IPMNC. 332
9.5 Robotic swimming structure (top) and swimmer with muscle undulation frequency 

of 3 Hz (bottom). The scale shown is in centimeters.
333

9.6 An illustrative design of robotic fish. 334
9.7 A robotic fish equipped with a single IPMNC tail fin. 334
9.8 A designed and fabricated undulating shark caudal fin actuator. 335
9.9 ERI’s biomimetic fish with an emarginated type of caudal fin design. 335
9.10 Some typical naturally evolved designs for caudal fins. 336
9.11 Some natural designs for caudal fins. 336
9.12 Another ERI’s biomimetic fish with an emarginated type of caudal fin design. 336
9.13 ERI’s biomimetic fish with a shark type of caudal fin design. 337
9.14 An assortment of ERI’s biomimetic robotic fish equipped with IPMNCs. 337
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Symbols

a Maximum swelled distance from the center of the gel
B Reduced electric potential
b Polyion separation distance
bi Spacing between ith row of polyion segments
C Total ion-exchange capacity, mL/g dry membrane; also, gel cylindrical

sample half radial thickness
Cp Power coefficient
CT Thrust coefficient
Cg Specific capacitance of the gel, F/g
Cmi Fourier coefficients
Coi Fourier coefficients
ci Concentration of the ith species
D Dielectric constant of the liquid phase; also, drag force 
Deff Effective diffusivity coefficient in cm2/sec
D0 Diameter of cylindrical polymer sample
∆∆∆∆E Driving force pumping ions; also, gradient of electric field
e Electron charge, 1.602 × 10–19 C
E Young’s modulus
F Total free energy; also, force performing mechanical work; also, force

produced in the gel; also, mean coulomb attraction/repulsion forces asso-
ciated with R*

F0 Force during isometric contraction
∆∆∆∆F Free energy decrease as a result of contact between two polymer networks
Fe Free energy due to work done against electric field
Fg Free energy due to gel deformation
f Frequency, Hz; also, number of ionized segments out of N0 total; also,

friction coefficient between polymer network and liquid medium
G Shear modulus
g Local gravity acceleration, 9.81 m/s2

H Total amount of hydrogen ions (including undissociated)
h Hydrogen ion concentration
h Hydrogen ion concentration inside the membrane
I Electric current, A
i Current density of the gel
K Dissociation constant; also, modified Bessel function
k Proportionality constant; also, Boltzmann constant, 1.381 × 1023 J/K; also,

bulk elastic modulus of the gel polymeric component
L Gel length when fully swollen
L0 Length of cylindrical polymer sample
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l Uniaxial elongation of muscle fiber
N0 Number of freely jointed segments of polymer
n Number density of counter-ions; also, number of polyions
ni Number density of ions for the ith species
P Pressure term, N/m2; also, hydrostatic pressure term
pH A measure of acidity or alkalinity of solution
Q Electric charge, C; also, charge per unit mass or specific charge of the

gel, C/g
q Electric charge, C; also, degree of swelling
qn Quantity of mobile ions
R Electric potential field per unit charge
R+ Electric potential field corresponding to positive charges
R– Electric potential field corresponding to negative charges
R* Total electric field due to all strands of polymer network
Rg Specific resistance of the gel, Ω/g
Re Reynolds number
r Hydrodynamic frictional coefficient; also, radius of ionic gel sample
r* Mean radius of ionic gel sample
ri Inner radius of elemental cylinder in gel fiber; also, cylindrical polar

coordinate
ro Outer radius of elemental cylinder in gel fiber
S Total amount of salt cation; also, entropy in thermodynamic context; also,

wetted surface area in fluid mechanics
Sw Linear swelling ratio
s Concentration of salt cation
s Concentration of salt cation inside the membrane
T Absolute temperature, K; also, thrust force, N
t Time, s
t* Thickness of gel cylindrical sample
U Total internal energy, J; also, steady-state velocity term
u0 Percent change of sample dimension at final state
uij Displacement vector of the gel elemental volume from its position when

the swelling process has gone to completion
V Water volume; also, volume in thermodynamic sense; also, velocity of

contraction
Vp Volume of the dry polymer sample
VT Total volume
V Water volume inside the membrane
v Voltage across the thickness of the gel, V
W Dry weight of the muscle membrane or gel
w0 Water content of the muscle membrane, ml/g
X Total concentration (dissociated and undissociated) of weak acid groups

in the membrane
Z Distance of an element from free end of the gel; also, number of ionizable

groups
Zi Cylindrical polar coordinate
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∆∆∆∆Z0 Elemental disk thickness before applied electricity
z Valance number
zi Valance of the ith species
αααα Degree of dissociation; also, degree of ionization; also, factor increasing

D0 after application of electricity
ββββ Factor increasing ∆Z0 after application of electricity; also, chemical stress

term
ββββm Positive root of Bessel function of order zero
ΓΓΓΓ Modified Bessel function
∆∆∆∆ Thickness term
δδδδij Mechanical strain
εεεε Dielectric constant; also, electric field energy; also, average electric charge
ηηηη Fish propulsion efficiency
θθθθ Cylindrical polar coordinate angle
ΦΦΦΦ Contraction rate of the gel
φφφφ Volume fraction of the polymer network
φφφφ0 Concentration of polymer (no interaction between segments or reference

states)
κκκκ Inverse of Debye length or effective thickness of the ionic layer surround-

ing the charge sites of the individual fibrils; also, phenomenological coef-
ficient

λλλλ Dimensionless parameter relating to β
µµµµ Shear modulus; also, average mobility of the medium in the gel; also,

solvent viscosity
µµµµh, µµµµs Hydrogen-ion and salt-cation mobility
µµµµi Chemical potential (energy) for the ith species
ξξξξ Positive root of Bessel function of order zero
ρρρρ Density of liquid solvent
ρρρρ* Charge density
σσσσij Tensile stress, N/m2

ττττ Reduced temperature
νννν Number of polymers cross-linked in the network; also, velocity of con-

traction of the gel; also, three-dimensional liquid velocity vector
ψψψψ Local electrostatic potential
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Acronyms

AMPS 2-Acrylamido-2-methyl-1-propanesulfonic acid monomer
CAM Composite artificial muscles
DLVO Combination double-layer forces and Van der Waals forces in ionic

gels
HEMA 2-Hydroxyethyl methacrylate
IEM Ion-exchange membrane
IEM-Pt Ion-exchange membrane platinum
IEMMC Ion-exchange membrane metal composite
IEMPC Ion-exchange membrane platinum composite
IPCC Ionic polymeric conductor composite
IPCNC Ionic polymeric conductor nanocomposite
IPMC Ionic polymeric metal composite
IPMNC Ionic polymer–metal nanocomposite
MBAA N, N′-Methylene-bis-acrylamide
PAAM Polyacrylic acid bis-acrylamide
PAM Polyacrylamide
PAMPS Poly2-acrylamido-2-methyl-1-propanesulfonic acid
PAN Polyacrylonitrile
PANi Polyaniline
PPy Polypyrrol
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