

Table of Contents

<i>Preface</i>	v
<i>List of Contributors</i>	vii
<i>From the Editors</i>	xxi

FUNDAMENTALS

Chapter 1 Basic properties and measuring methods of nanoparticles

1.1 Size effect and properties of nanoparticles	5	1.5 Melting point, surface tension, wettability	18
1.1.1 Definition of nanoparticles	5	1.5.1 Melting point	18
1.1.2 Features of nanoparticles	5	1.5.2 Surface tension	18
1.1.3 Evaluation of size of nanoparticles	5	1.5.3 Wettability	19
1.1.4 Properties of nanoparticle and size effect	6	1.6 Specific surface area and pore	20
1.1.5 Existing conditions of particles and their properties	10	1.7 Composite structure	23
1.2 Particle size	10	1.7.1 Composite structure of nanoparticle	23
1.2.1 Definition of particle size	10	1.7.2 Evaluation method of composite structure using electron microscopy	24
1.2.2 Measuring methods	11	1.7.3 Microstructure evaluation of several types of nano composite particles	25
1.2.3 Key points in the measurements – Reference particles for calibration	11	1.8 Crystal structure	28
1.3 Particle shape	12	1.8.1 Particle size dependence of crystalline phases of zirconia	28
1.3.1 Two-dimensional particle projection image	12	1.8.2 Size effect and crystalline phases of ferroelectric materials	30
1.3.2 Three-dimensional particle image	12	1.9 Surface characteristics	32
1.3.3 Particle shape index using particle diameter ratio	12	1.10 Mechanical property	36
1.3.4 Particle shape expression by fractal dimension	13	1.11 Electrical properties	38
1.3.5 Particle shape analysis by Fourier analysis	14	1.11.1 Introduction	38
1.3.6 Particle shape analysis of nanoparticle	14	1.11.2 Novel characterization method for the dielectric property	39
1.4 Particle density	14	1.11.3 LST relation	39
1.4.1 Density measurement of powders composed of nanoparticles	14	1.11.4 Measurement of the dielectric constant of nanoparticles	40
1.4.2 Density measurement of individual particles	15	1.12 Magnetic properties	42
		1.12.1 Classification of magnetism	42
		1.12.2 Magnetism of metal materials	43

1.12.3 Magnetism of oxide material	43	1.13 Optical property of nanoparticle	45
1.12.4 Magnetic characteristics of nanosized materials	44	1.13.1 Band structure of nanoparticles	45
		1.13.2 Measurement method of optical properties of nanoparticles	47

Chapter 2 Structural control of nanoparticles

2.1 Structure construction and function adaptation of nanoparticles	51	2.4 Composite structure	79
2.1.1 Structures of nanoparticles	51	2.4.1 Gas-phase method	79
2.1.2 Hollow particles	52	2.4.2 Solution method	84
2.1.3 Core-shell particles	52	2.4.3 Supercritical approach	87
2.1.4 Simple inorganic nanoparticles	54	2.4.4 Mechanical processes	91
2.1.5 Simple organic nanoparticles	54	2.5 Pore structure	94
2.1.6 Summary	55	2.5.1 Gas-phase method	94
2.2 Particle size	56	2.5.2 Liquid-phase synthesis	100
2.2.1 Gas-phase method	56	2.6 Nanoparticle design for DDS	105
2.2.2 Liquid-phase method	58	2.6.1 Drug delivery with nanoparticle	105
2.2.3 Supercritical hydrothermal method	61	2.6.2 Design of nano drug carrier	106
2.2.4 Solid-phase method	65	2.6.3 Design of nanoparticle surface and application for DDS	108
2.2.5 Grinding method	69	2.6.4 Pharmaceutical nanotechnology	109
2.3 Particle shape	71	2.7 Nanotubes (CNT)	109
2.3.1 Gas-phase process	71	2.7.1 Production of MWNT by arc discharge method	110
2.3.2 Liquid-phase method	76	2.7.2 Production of SWNT by arc discharge method	110

Chapter 3 Characteristics and behavior of nanoparticles and its dispersion systems

3.1 Introduction of nanoparticle dispersion and aggregation behavior	115	3.2 Single nanoparticle motion in fluid	119
3.1.1 Surface interaction between nanoparticles	115	3.2.1 Single particle motion	119
3.1.2 Difficulty in nanoparticle dispersion control based on DLVO theory	115	3.2.2 Phoretic phenomena	121
3.1.3 Difficulty in nanoparticle dispersion, discussion based on the effect of particle diameter and solid fraction on distance between particle surface	116	3.3 Brownian diffusion	126
3.1.4 Surface molecular-level structure of nanoparticles [3]	117	3.4 Adsorption properties and wettability of nanoparticle surface	127
3.1.5 Basic approach to control nanoparticle dispersion behavior	118	3.5 Interactions between particles	129
		3.5.1 Interactions between particles in gases and control of adhesion	129
		3.5.2 Control of interactions between particles in liquids	139
		3.5.3 Characterization techniques for interactions between particles	146

3.6 Aggregation and dispersion, characterization and control ——————	157	3.7.2 Rheological property of nanoparticle dispersed suspension <i>168</i>
3.6.1 Aggregation and dispersion in gas phase <i>157</i>		3.8 Simulation of colloidal dispersion system —————— <i>169</i>
3.6.2 Liquid phase <i>159</i>		3.8.1 Space-time mapping of simulation methods <i>170</i>
3.6.3 Dispersion in organic solvent and polymer resin <i>163</i>		3.8.2 Simulation methods in nano/mesoscale <i>172</i>
3.7 Rheology of slurry ——————	165	3.8.3 Recent simulation methods including hydrodynamic interaction <i>174</i>
3.7.1 Fundamentals of suspension rheology <i>165</i>		3.8.4 Closing remark <i>175</i>

Chapter 4 Control of nanostructure of materials

4.1 Assembly of nanoparticles and functionalization ——————	179	4.4.5 ECAP <i>216</i>
4.2 Nanoparticles arranged structures ——————	179	4.4.6 Nanostructure control of alloy <i>220</i>
4.2.1 Photonic fractal <i>179</i>		4.5 Structure control of nanoparticle collectives by sintering and bonding —————— <i>222</i>
4.2.2 Nanoparticle patterning by nanobiotechnology: Peptide <i>182</i>		4.5.1 Sintering of nanoparticles <i>222</i>
4.2.3 Preparation of ceramic films by liquid-phase processing: Electrophoresis <i>187</i>		4.5.2 Low temperature cofired ceramics (LTCC) <i>226</i>
4.3 Nanopore structure ——————	190	4.5.3 Nanostructure control of a joined interface <i>230</i>
4.3.1 Microporous material: Zeolite <i>190</i>		4.5.4 Joining by FSW <i>233</i>
4.3.2 Preparation of nanoporous material by dry processing <i>194</i>		4.5.5 Aerosol deposition method for nanostructuring of crystal layer and its applications <i>236</i>
4.3.3 Ordered porous structures <i>196</i>		4.5.6 Suppression of particle growth in sintering nanoparticles <i>242</i>
4.3.4 Nanoporous materials (Titania nanotubes) <i>199</i>		4.5.7 Fabrication of nanoceramics by colloidal processing <i>246</i>
4.4 Nanocomposite structure ——————	203	4.6 Self-assembly —————— <i>250</i>
4.4.1 Catalyst microstructure <i>203</i>		4.6.1 Self-organization of nanoparticles <i>250</i>
4.4.2 Percolation structure <i>206</i>		4.6.2 Assembling and patterning of particles <i>256</i>
4.4.3 Structure of filler orientation in matrix <i>210</i>		4.6.3 Fabrication of organic/inorganic mesoporous materials <i>262</i>
4.4.4 In situ particle polymerization <i>213</i>		

Chapter 5 Characterization methods for nanostructure of materials

5.1 Nanostructure and function (characterization of local nanostructure) ——————	269	5.2 Crystal structure —————— <i>270</i>
		5.2.1 X-ray diffraction method <i>270</i>
		5.2.2 Small-angle X-ray scattering <i>272</i>

Chapter 7 Environmental and safety issues with nanoparticles

7.1 Introduction ——————	387	7.3 Safety of nanoparticles ——————	400
7.2 Nanoparticles and environment ——————	387	7.3.1 Problems caused by nanoparticles	400
7.2.1 Nanoparticles in atmospheric environment	387	7.3.2 Health effects on nanoparticles	401
7.2.2 Ground water environments and nanoparticles	389	7.3.3 Safety assessment for the nanoparticles	406
7.2.3 Nanoparticles in exhaust gases	390	7.4 Removal of nanoparticles ——————	410
7.2.4 Nanoparticles in wastewater	392	7.4.1 Principle of particle removal	410
7.2.5 Indoor environments and nanoparticles	393	7.4.2 Removal of nanoparticles suspended in gas	410
7.2.6 Industrial processes and nanoparticles	396	7.4.3 Removal of nanoparticles in liquid	413

APPLICATIONS

1 Dispersion of fine silica particles using alkoxy silane and industrialization ——————	423
1. Sol-gel hybrid	423
2. Molecular design	423
3. Unmeltable plastics: epoxy resin hybrid	425
4. Tough resin: hybrid of the phenol resin system	426
5. Soft silica hybrid: hybrid of the urethane system	426
6. Cheap engineering plastics in place for imide: hybrid of the amideimide system	426
7. Imide useful for electroless plating: hybrid of the imide system	427
2 Generation of metal nanoparticles using reactive plasma arc evaporation ——————	428
1. Summary of the reactive plasma arc evaporation method	428
2. Nanoparticles by the reactive plasma arc evaporation method	429
3. The nanoparticles generation rate, characteristics, and shape	429
4. Application of the nanoparticle	430
3 Sensing based on localized surface plasmon resonance in metallic nanoparticles ——————	432
1. Localized surface plasmon	432
2. Two sensing method using plasmon	432
4 Microelectronics packaging by metal nanoparticle pastes ——————	434
1. Conductive paste technique and metal nanoparticle paste	434
2. Low temperature firing and fine electronic circuit pattern formation by screen printing	435
3. Direct formation of the electronic circuit pattern by inkjet printing	437
4. Application as the joining materials	438

5 A dye-sensitized solar cell utilizing metal nanoparticle	438
1. What is a dye-sensitized solar cell?	438
2. Enhancement of the absorption coefficient of the ruthenium dye, with the silver nanoparticle produced via vacuum	439
3. Enhancement of the absorption coefficient of silver nanoparticle-ruthenium dye within porous TiO ₂	440
6 Design of nanoparticles for oral delivery of peptide drugs	442
1. Particulate design and functions	443
2. Case studies	445
7 Formation of thick electronic ceramic films with bonding technique of crystalline fine particles and their applications	450
1. Aerosol deposition method (ADM)	450
2. Formation of thick electronic ceramic films with ADM	450
3. Applications of AD ceramic films	451
8 Development and multi-functionalization of high-functional separation membranes	453
1. Gas separation	453
2. Liquid separation	456
9 Development of polymer-clay nanocomposites by dispersion of particles into polymer materials	458
1. Nylon 6-clay hybrid	458
2. Synthesis and properties of polypropylene-clay hybrid	459
3. Synthesis and properties of EPDM-clay hybrid	459
4. Morphology control by polymers with clay	459
10 Development of novel ferroelectric materials	460
1. Crystal structure of bismuth layer-structured ferroelectrics (BLSFs)	460
2. Crystal growth and experimental procedure	461
3. Layered structure, dielectric and leakage current properties of BiT-BBTi crystals	462
4. Giant polarization in BiT-BBTi crystals	462
11 Development of new phosphors	464
1. History of development of nanophosphor	464
2. Properties of rare earth nanophosphor	465
3. Development trend of new nanophosphor	465
12 Zeolite membrane	467
1. Characteristics	467
2. Synthesis	467
3. Separation properties of zeolite membranes	469

30 Nozzle-free inkjet technology	546
1. Principle of nozzle-free inkjet technology and outline of developed system	547
2. Formation of slurry using nozzle-free inkjet technology	549
31 Development of exhaust catalyst	550
1. Supported metal catalyst	550
2. Oxygen storage capacity (OSC) of catalyst	551
3. Improvement of OSC of catalyst	551
4. Improvement of thermal resistance of catalyst	553
32 Development of optical memory using semiconductor nanoparticles	555
1. Fluorescence characteristics of semiconductor nanoparticles	555
2. Optical memory effect of semiconductor nanoparticle thin films	556
3. Methods of preparing and evaluating CdSe thin films	556
4. Dependency of intensity of fluorescence on the excitation light intensity	556
5. Future topics	557
33 Development of bright phosphors using glasses incorporating semiconductor nanoparticles	558
1. Syntheses of highly photoluminescent semiconductor nanoparticles by an aqueous solution method	559
2. Preparation of glass phosphors incorporating semiconductor nanoparticles by a sol-gel method	559
34 Development of photocatalyst inserted into surface of porous aluminosilicate	562
1. Structure of TiO_2 -aluminosilicate complex	562
2. Photocatalysis of TiO_2 -aluminosilicate complex	562
3. Photoendurance of paper with TiO_2 -aluminosilicate complex	564
35 AC overhead transmission line audible-noise reduction measures using surface improvement	566
1. Audible noise of AC overhead transmission lines	566
2. Wetting property of power lines	566
3. Preparation of test power lines	567
4. Features of titanium oxide thermal-sprayed films	568
5. Audible-noise measurement	568
36 Development of a high-performance secondary battery by controlling the surface structure	570
1. Anode of a nickel hydrogen battery	571
2. Cathode of the nickel hydrogen battery	572
3. Cathode of lithium ion battery	572
4. Anode of the lithium ion battery	573
37 Pinpoint drug and gene delivery	575
1. Bio-nanocapsules (BNC)	575
2. Potential applications of BNC	576
3. Assignment	577
4. Conclusion	578

38 Expression of optical function by nanostructure using femtosecond laser processing	578
1. Space selective valence state manipulation of rare earth ions inside glasses	578
2. Precipitation control of gold nanoparticles inside transparent materials by a femtosecond laser	579
3. Nanograting fabrication	581
39 Instantaneous nanofoaming method for fabrication of closed-porosity silica particle	583
40 Evaluation and applications of dispersing carbon nanotube in the polymers	588
1. Carbon nanotube	588
2. Fracture model of agglomerates of carbon nanotube	588
3. Dispersion of CNT by an extruder	588
4. Dispersion of composites and its evaluation	590
5. Relationship between the agglomerate fraction Ar and composite properties	590
6. Percolation	591
7. Development of CNT composite resin materials	592
41 Surface modification of inorganic nanoparticles by organic functional groups	593
1. Surface-modified noble metal nanoparticles	593
2. Organic modification of metal oxide nanoparticles	593
3. Hybridization of inorganic nanoparticles with biomolecules	595
42 Fabrication technique of organic nanocrystals and their optical properties and materialization	596
1. The organic compounds used for nanocrystallization	596
2. Fabrication techniques of organic nanocrystals	596
3. Size-dependence of optical properties for organic nanocrystals	599
4. Orientation control of dispersed organic nanocrystals by external field	600
43 Bio-imaging with quantum dots	601
1. Developments of quantum dots	601
2. Development of bio-imaging	602
3. Bio-imaging and quantum dots	602
4. Quantum dots label for the antibody	603
5. In vivo imaging of the quantum dots stained cell: the localization in organs	603
6. Observation of the localization from outside of the body	605
44 Application of quantum dots for bio-medical engineering	606
1. Application for laboratory test	606
2. Diagnosis by imaging analysis	607
Subject Index	609