

Contents

<i>Contributor contact details</i>	<i>xvii</i>
<i>Preface</i>	<i>xxiii</i>
Part	Sources, properties, modification and processing of natural-based polymers
	Polysaccharides as carriers of bioactive agents for medical applications 3
	R. PAWAR, W. JADHAV, S. BHUSARE and R. BORADE, Dnyanopasak College, India, S. FARBER, D. IRZKOWITZ and A. DOMB, The Hebrew University, Jerusalem, Israel
	Introduction 3
1.2	Starch 6
1.3	Cellulose
1.4	Heparinoid (sulfated polysaccharides) 8
1.5	Dextran 10
1.6	Pectin 12
1.7	Arabinogalactan 13
1.8	Drug conjugated polysaccharides 15
1.9	Polysaccharide dextrans 19
1.10	Mannan 22
1.11	Pullulan 23
1.12	Polysaccharide macromolecule–protein conjugates 24
1.13	Cationic polysaccharides for gene delivery 25
1.14	Diethylaminoethyl-dextran 26
1.15	Polysaccharide–oligoamine based conjugates 27
1.16	Chitosan 27
1.17	Applications of polysaccharides as drug carriers 31
1.18	Applications of dextran conjugates 33
1.19	Site-specific drug delivery 38

1.20	Pectin drug site-specific delivery	38
1.21	Liposomal drug delivery	40
1.22	References	45
2	Purification of naturally occurring biomaterials	54
	M. N. GUPTA, Indian Institute of Technology Delhi, India	
2.1	Introduction	54
2.2	Classes of naturally occurring biomaterials	55
2.3	Downstream processing of small molecular weight natural products	57
2.4	Purification strategies for proteins	60
2.5	Purification of lipids	67
2.6	Purification of polysaccharides	71
2.7	Purification of nucleic acids	72
2.8	Purification of complex biomaterials	75
2.9	Future trends	76
2.10	Acknowledgement	77
2.11	Sources of further information	77
2.12	References	78
3	Processing of starch-based blends for biomedical applications	85
	R. A. SOUSA, V. M. CORRELO, S. CHUNG, N. M. NEVES, J. F. MANO and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
3.1	Introduction	85
3.2	Starch	85
3.3	Starch-based blends	88
3.4	Conclusions	98
3.5	References	99
4	Controlling the degradation of natural polymers for biomedical applications	
	H. S. AZEVEDO, T. C. SANTOS and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
4.1	Introduction	106
4.2	The importance of biodegradability of natural polymers in biomedical applications	106
4.3	Degradation mechanisms of natural polymers and metabolic pathways for their disposal in the body	
4.4	Assessing the <i>in vitro</i> and <i>in vivo</i> biodegradability of natural polymers	111
4.5	Controlling the degradation rate of natural polymers	120

4.6	Concluding remarks	124
4.7	Acknowledgements	125
4.8	References	125
5	Smart systems based on polysaccharides	
	M. N. GUPTA and S. RAGHAVA, Indian Institute of Technology Delhi, India	
5.1	What are smart materials?	129
5.2	Chitin and chitosan	131
5.3	Alginates	136
5.4	Carageenans	140
5.5	Other miscellaneous smart polysaccharides and their applications	145
5.6	Polysaccharide-based composite materials	146
5.7	Future trends	149
5.8	Acknowledgement	152
5.9	Sources of further information	152
5.10	References	154
Part II	Surface modification and biomimetic coatings	
6	Surface modification for natural-based biomedical polymers	165
	I. PASHKULEVA, P. M. LÓPEZ-PÉREZ and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
6.1	Introduction	165
6.2	Some terms and classifications	165
6.3	Wet chemistry in surface modification	167
6.4	Physical methods for surface alterations	171
6.5	Grafting	177
6.6	Bio-approaches: Mimicking the cell–cell interactions	179
6.7	Future trends	186
6.8	Acknowledgements	186
6.9	References	186
7	New biomimetic strategies for the use of natural-based polymeric materials in bone-tissue engineering	
	I. B. LEONOR, S. GOMES, P. C. BESSA, J. F. MANO, R. L. REIS, 3B's Research Group, University of Minho, Portugal and M. Casal, CBMA – Molecular and Environmental Biology Center, University of Minho, Portugal	
7.	Introduction	193

Contents

7.2	The structure, development and mineralization of bone	194
7.3	Bone morphogenetic proteins in tissue engineering	201
7.4	Bio-inspired calcium-phosphate mineralization from solution	206
7.5	General remarks and future trends	216
7.6	Acknowledgments	217
7.7	References	217
8	Natural-based multilayer films for biomedical applications	
	C. PICART, Université Montpellier, France	
8.1	Introduction	231
8.2	Physico-chemical properties	234
8.3	Different types of natural-based multilayer films for different applications	240
8.4	Bioactivity, cell adhesion, and biodegradability properties	244
8.5	Modulation of film mechanical properties	248
8.6	Future trends	250
8.7	Sources of further information and advice	251
8.8	References	252
9	Peptide modification of polysaccharide scaffolds for targeted cell signaling	
	S. LÉVESQUE, R. WYLIE, Y. AIZAWA and M. SHOICHE, University of Toronto, Canada	
9.1	Introduction	260
9.2	Polysaccharide scaffolds in tissue engineering	265
9.3	Peptide immobilization	267
9.4	Measurement	272
9.5	Challenges associated with peptide immobilization	274
9.6	Tissue engineering approaches targeting cell signaling	275
9.7	References	277
Part III Biodegradable scaffolds for tissue regeneration		
10	Scaffolds based on hyaluronan derivatives in biomedical applications	
	E. TOGNANA, Fidia Advanced Biopolymers s.r.l., Italy	
10.1	Introduction	291
10.2	Hyaluronan	291
10.3	Hyaluronan-based scaffolds for biomedical applications	293
10.4	Clinical applications	298

10.5	Future trends	308
10.6	Sources of further information and advice	309
10.7	References	310
Electrospun elastin and collagen nanofibers and their application as biomaterials		315
R. SALLACH and E. CHAIKOF, Emory University/Georgia Institute of Technology, USA		
11.1	Introduction	315
11.2	Electrospinning as a biomedical fabrication technology	316
11.3	Generation of nanofibers with controlled structures and morphology	
11.4	Generation of collagen and elastin small-diameter fibers and fiber networks	318
11.5	Biological role of elastin	321
11.6	Generation of crosslinked fibers and fiber networks	328
11.7	Multicomponent electrospun assemblies	329
11.8	Future trends	331
11.9	References	332
12	Starch-polycaprolactone based scaffolds in bone and cartilage tissue engineering approaches	
M. E. GOMES, J. T. OLIVEIRA, M. T. RODRIGUES, M. I. SANTOS, K. TUZLAKOGLU, C. A. VIEGAS, I. R. DIAS and R. L. REIS, 3B's Research Group, University of Minho, Portugal		
12.1	Introduction	337
12.2	Starch+ ϵ -polycaprolactone (SPCL) fiber meshes	338
12.3	SPCL-based scaffold architecture, stem cell proliferation and differentiation	339
12.4	<i>In vivo</i> functionality of SPCL fiber-mesh scaffolds	341
12.5	Cartilage tissue engineering using SPCL fiber-mesh scaffolds	342
12.6	Advanced approaches using SPCL scaffolds for bone tissue engineering aiming at improved vascularization	346
12.7	Conclusions	350
12.8	Acknowledgments	351
12.9	References	351
13	Chitosan-based scaffolds in orthopedic applications	
K. TUZLAKOGLU and R. L. REIS, 3B's Research Group, University of Minho, Portugal		
13.	Introduction: Chemical and physical structure of chitosan and its derivatives	

13.3	Production methods for scaffolds based on chitosan and its composites or blends	358
13.4	Orthopedic applications	365
13.5	Conclusions and future trends	369
13.6	Acknowledgements	369
13.6	References	369
14	Elastin-like systems for tissue engineering	374
	J. RODRIGUEZ-CABELLO, A. RIBEIRO, J. REGUERA, A. GIROTTI and A. TESTERA, Universidad de Valladolid, Spain	
14.1	Introduction	374
14.2	Genetic engineering of protein-based polymers	375
14.3	Genetic strategies for synthesis of protein-based polymers	376
	State-of-the-art in genetically-engineered protein-based polymers (GEBPs)	
14.5	Elastin-like polymers	377
14.6	Self-assembly behaviour of peptides and proteins	379
14.7	Self-assembly of elastin-like polymers (ELPs)	379
14.8	Biocompatibility of ELPs	381
14.9	Biomedical applications	382
14.10	ELPs for drug delivery	382
14.11	Tissue engineering	383
14.12	Self-assembling properties of ELPs for tissue engineering	388
14.13	Processability of ELPs for tissue engineering	388
14.14	Future trends	389
14.15	References	391
15	Collagen-based scaffolds for tissue engineering	396
	G. CHEN, N. KAWAZOE and T. TATEISHI, National Institute for Materials Science, Japan	
15.1	Introduction	396
15.2	Structure and properties of collagen	396
15.3	Collagen sponge	397
15.4	Collagen gel	400
15.5	Collagen-glycosaminoglycan (GAG) scaffolds	402
15.6	Acellularized scaffolds	404
15.7	Hybrid scaffolds	405
15.8	Future trends	409
15.9	References	409

16	Polyhydroxyalkanoate and its potential for biomedical applications	
	P. FURER and M. ZINN, Swiss Federal Laboratories for Materials Testing and Research (Empa), Switzerland, and S. PANKE, Swiss Federal Institute of Technology (ETH), Switzerland	
16.1	Introduction	416
16.2	Biosynthesis	417
16.3	Chemical digestion of non-PHA biomass	425
16.4	Purification of PHA	431
16.5	Potential applications of PHA in medicine and pharmacy	434
16.6	Conclusions and future trends	437
16.7	References	437
17	Electrospinning of natural proteins for tissue engineering scaffolding	
	P. I. LELKES, M. LI, A. PERETS, L. LIN, J. HAN and D. WOERDEMAN, Drexel University, USA	
17.1	Introduction	446
17.2	The electrospinning process	448
17.3	Electrospinning natural animal polymers	455
17.4	Electrospinning blends of synthetic and natural polymers	460
17.5	Electrospinning novel natural 'green' plant polymers for tissue engineering	
17.6	Cellular responses to electrospun scaffolds: Does fiber diameter matter?	474
17.7	Conclusions and future trends	474
17.8	Sources of further information and advice	475
17.9	References	476
Part IV Naturally-derived hydrogels: Fundamentals, challenges and applications in tissue engineering and regenerative medicine		
18	Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine	
	J. T. OLIVEIRA and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
18.1	Introduction: Definitions and properties of hydrogels	
18.2	Applications of hydrogels produced from different polysaccharides in tissue engineering and regenerative medicine	

18.3	Agarose	488
18.4	Alginate	489
18.5	Carrageenan	491
18.6	Cellulose	492
18.7	Chitin/chitosan	493
18.8	Chondroitin sulfate	495
18.9	Dextran	496
18.10	Gellan	497
18.11	Hyaluronic acid	498
18.12	Starch	500
18.13	Xanthan	501
18.14	Conclusion	502
18.15	References	503
19	Alginate hydrogels as matrices for tissue engineering	
	H. PARK and K.-Y. LEE, Hanyang University, South Korea	
19.1	Introduction	515
19.2	Properties of alginate	516
19.3	Methods of gelling	520
19.4	Applications of alginate hydrogels in tissue engineering	523
19.5	Summary and future trends	528
19.6	References	528
20	Fibrin matrices in tissue engineering	
	B. TAWIL, H. DUONG and B. WU, University of California Los Angeles, USA	
20.1	Introduction	533
20.2	Fibrin formation	534
20.3	Fibrin use in surgery	535
20.4	Fibrin matrices to deliver bioactive molecules	535
20.5	Fibrin – cell constructs	536
20.6	Mechanical characteristics of fibrin scaffold	540
20.7	Future trends	541
20.8	Conclusions	542
20.9	References	543
2	Natural-based polymers for encapsulation of living cells: Fundamentals, applications and challenges	
	P. DE VOS, University Hospital of Groningen, The Netherlands	
2.1	Introduction	549

21.2	Approaches of encapsulation: Materials and biocompatibility issues	550
21.3	Physico-chemistry of microcapsules and biocompatibility	556
21.4	Immunological considerations	559
21.5	Conclusions and future trends	561
21.6	Sources of further information and advice	563
21.7	References	564
22	Hydrogels for spinal cord injury regeneration	570
	A. J. SALGADO and N. SOUSA, Life and Health Sciences Research Institute (ICVS), University of Minho, Portugal, and N. A. SILVA, N. M. NEVES and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
22.1	Introduction	570
22.2	Brief insights on central nervous system biology	571
22.3	Current approaches for SCI repair	576
22.4	Hydrogel-based systems in SCI regenerative medicine	578
22.5	Conclusions and future trends	587
22.6	Acknowledgements	588
22.7	References	588
Part V Systems for the sustained release of molecules		
23	Particles for controlled drug delivery	
	E. T. BARAN and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
23.1	Introduction	597
23.2	Novel particle processing methods	597
23.3	Hiding particles: The stealth principle	602
23.4	Finding the target	604
23.5	Delivery of bioactive agents at the target site and novel deliveries	608
23.6	Viral delivery systems	611
23.7	Conclusions	612
23.8	Acknowledgements	613
23.9	References	613
24	Thiolated chitosans in non-invasive drug delivery	
	A. BERNKOP-SCHNÜRCH, Leopold-Franzens University, Austria	
24.1	Introduction	624
24.2	Thiolated chitosans	625

xiv	Contents	
24.3	Properties of thiolated chitosans	625
24.4	Drug delivery systems	633
24.5	<i>In vivo</i> performance	634
24.6	Conclusion	638
24.7	References	639
25	Chitosan–polysaccharide blended nanoparticles for controlled drug delivery	644
	J. M. ALONSO and F. M. GOYCOOLEA, Universidad de Santiago de Compostela, Spain, and I. HIGUERA-CIAPARA, Centro de Investigación en Alimentación y Desarrollo, Mexico	
25.1	Introduction	644
25.2	Polysaccharides in nanoparticle formation	645
25.3	Nanoparticles constituted by chitosan	651
25.4	Drug delivery properties and biopharmaceutical applications	654
25.5	Hybrid nanoparticles consisting of chitosan and other polysaccharides	656
25.6	Future trends	668
25.7	Sources of further information and advice	668
25.8	Acknowledgements	671
25.9	References	671
Part VI Biocompatibility of natural-based polymers		
26	<i>In vivo</i> tissue responses to natural-origin biomaterials	
	T. C. SANTOS, A. P. MARQUES and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
26.1	Introduction	683
26.2	Inflammation and foreign-body reactions to biomaterials	684
26.3	Role of host tissues in biomaterials implantation	686
26.4	Assessing the <i>in vivo</i> tissue responses to natural-origin biomaterials	690
26.5	Controlling the <i>in vivo</i> tissue reactions to natural-origin biomaterials	693
26.6	Final remarks	695
26.7	Acknowledgements	695
26.8	References	695
27	Immunological issues in tissue engineering	
	N. ROTTNER, Ulm University, Germany	
27	Introduction	699

27.2	Immune reactions to biomaterials	699
27.3	Host reactions related to the implant site	701
27.4	Immune reactions to different types of cells	701
27.5	Immune reactions to <i>in vitro</i> engineered tissues	704
27.6	Immune protection of engineered constructs	705
27.7	Strategies directed towards reactions to biomaterials	706
27.8	Strategies directed towards reactions to implanted cells	707
27.9	Future trends	709
27.10	References	710
28	Biocompatibility of hyaluronic acid: From cell recognition to therapeutic applications	716
	K. GHOSH, Children's Hospital and Harvard Medical School, USA	
28.1	Introduction	716
28.2	Native hyaluronan	717
28.3	Therapeutic implications of native hyaluronan	721
28.4	Engineered hyaluronan	722
28.5	Implications for regenerative medicine	727
28.6	Conclusion	728
28.7	Future trends	728
28.8	References	728
29	Biocompatibility of starch-based polymers	738
	A. P. MARQUES, R. P. PIRRACO and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
29.1	Introduction	738
29.2	Starch-based polymers in the biomedical field	740
29.3	Cytocompatibility of starch-based polymers	745
29.4	Immunocompatibility of starch-based polymers	748
29.5	Conclusions	752
29.6	Acknowledgements	753
29.7	References	753
30	Vascularization strategies in tissue engineering	761
	M. I. SANTOS, and R. L. REIS, 3B's Research Group, University of Minho, Portugal	
30.1	Introduction	761
30.2	Biology of vascular networks – angiogenesis versus vasculogenesis	761
30.3	Vascularization: The hurdle of tissue engineering	762
30.4	Neovascularization of engineered bone	763

xvi **Contents**

Strategies to enhance vascularization in engineered grafts	765
<i>In vivo</i> models to evaluate angiogenesis in tissue engineered products	765
30.7 Future prospects	774
30.8 Sources of further information and advice	776
30.9 References	776
<i>Index</i>	781