

Membrane Operations

Edited by
Enrico Drioli and Lidietta Giorno

Related Titles

Seidel-Morgenstern, A. (ed.)

Membrane Reactors

Case Studies to Improve Selectivity and Yields

2009

ISBN: 978-3-527-32039-4

Koltuniewicz, A., Drioli, E.

Membranes in Clean Technologies

Theory and Practice

2008

ISBN: 978-3-527-32007-3

Peinemann, K.-V., Pereira Nunes, S. (eds.)

Membrane Technology

Volume 1: Membranes for Life Sciences

2007

ISBN: 978-3-527-31480-5

Peinemann, K.-V., Pereira Nunes, S. (eds.)

Membrane Technology

Volume 2: Membranes for Energy Conversion

2007

ISBN: 978-3-527-31481-2

Li, K.

Ceramic Membranes for Separation and Reaction

2007

ISBN: 978-0-470-01440-0

Pereira Nunes, S., Peinemann, K.-V. (eds.)

Membrane Technology

in the Chemical Industry

2006

ISBN: 978-3-527-31316-7

Sammells, A. F., Mundschauf, M. V. (eds.)

Nonporous Inorganic Membranes

for Chemical Processing

2006

ISBN: 978-3-527-31342-6

Freeman, B., Yampolskii, Y.,
Pinna, I. (eds.)

Materials Science of Membranes for Gas and Vapor Separation

2006

ISBN: 978-0-470-85345-0

Ohlrogge, K., Ebert, K. (eds.)

Membranen

Grundlagen, Verfahren und industrielle Anwendungen

2006

ISBN: 978-3-527-30979-5

Membrane Operations

Innovative Separations and Transformations

Edited by

Enrico Drioli and Lidietta Giorno

WILEY-
VCH

WILEY-VCH Verlag GmbH & Co. KGaA

The Editors

Prof. Enrico Drioli

University of Calabria
Institute on Membrane Technology
Via P. Bucci 17 /C
87030 Rende (CS)
Italy

Prof. Lidietta Giorno

University of Calabria
Institute on Membrane Technology
Via P. Bucci 17 /C
87030 Rende (CS)
Italy

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

**Bibliographic information published by
the Deutsche Nationalbibliothek**

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photostripping, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Thomson Digital, Noida, India

Printing Betz-Druck GmbH, Darmstadt

Bookbinding Litges & Döpf GmbH, Heppenheim

Cover Design Formgeber, Eppelheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-32038-7

Contents

List of Contributors XVII

Introduction XXIII

Part One Molecular Separation 1

1	Molecular Modeling, A Tool for the Knowledge-Based Design of Polymer-Based Membrane Materials 3
	<i>Dieter Hofmann and Elena Tocci</i>
1.1	Introduction 3
1.2	Basics of Molecular Modeling of Polymer-Based Membrane Materials 5
1.3	Selected Applications 7
1.3.1	Hard- and Software 7
1.3.2	Simulation/Prediction of Transport Parameters and Model Validation 8
1.3.2.1	Prediction of Solubility Parameters 9
1.3.2.2	Prediction of Diffusion Constants 9
1.3.3	Permeability of Small Molecules and Free-Volume Distribution 12
1.3.3.1	Examples of Polymers with Low Permeability of Small Molecules (e.g., $\text{PO}_2 \leq 50$ Barrer) 13
1.3.3.2	Examples of Polymers with High Permeability of Small Molecules (e.g., $50 \text{ Barrer} \leq \text{PO}_2 \leq 200 \text{ Barrer}$) 13
1.3.3.3	Examples of Polymers with Ultrahigh Permeability of Small Molecules (e.g., $\text{PO}_2 \geq 1000$ Barrer) 14
1.4	Summary 16
	References 17
2	Polymeric Membranes for Molecular Separations 19
	<i>Heru Susanto and Mathias Ulbricht</i>
2.1	Introduction 19
2.2	Membrane Classification 19

2.3	Membrane Polymer Characteristics	22
2.3.1	Polymer Structure and Properties	22
2.3.2	Membrane Polymer Selection	23
2.3.2.1	Polymers for Porous Barriers	23
2.3.2.2	Polymers for Nonporous Barrier	25
2.3.2.3	Polymers for Charged Barrier	26
2.4	Membrane Preparation	26
2.4.1	Track-Etching of Polymer Films	26
2.4.2	Phase Separation of Polymer Solutions	27
2.4.3	Composite Membrane Preparation	30
2.4.4	Mixed-Matrix Membranes	32
2.5	Membrane Modification	32
2.6	Established and Novel Polymer Membranes for Molecular Separations	34
2.6.1	Ultrafiltration	34
2.6.2	Reverse Osmosis and Nanofiltration	36
2.6.3	Pervaporation	37
2.6.4	Separations Using Ion-Exchange Membranes	38
2.7	Conclusion and Outlook	40
	References	41
3	Fundamentals of Membrane Solvent Separation and Pervaporation	<i>45</i>
	<i>Bart Van der Bruggen</i>	
3.1	Introduction: Separation Needs for Organic Solvents	45
3.2	Pervaporation and Nanofiltration Principles	46
3.3	Membrane Materials and Properties for Solvent Separation	48
3.3.1	Solvent-Stable Polymeric Membrane Materials	48
3.3.2	Ceramic Membrane Materials	49
3.3.3	Solvent Stability	52
3.3.4	Structural Properties for Membranes in NF and PV	52
3.4	Flux and Separation Prediction	53
3.4.1	Flux Models in NF	53
3.4.2	Rejection in NF	55
3.4.3	Models for PV: from Solution-Diffusion to Maxwell–Stefan	56
3.4.4	Hybrid Simulations	57
3.5	Conclusions	58
	References	58
4	Fundamentals of Membrane Gas Separation	<i>63</i>
	<i>Tom M. Murphy, Grant T. Offord, and Don R. Paul</i>	
4.1	Introduction	63
4.2	Polymer Structure and Permeation Behavior	64
4.3	Membranes from Glassy Polymers: Physical Aging	69
4.4	Membranes from Rubbery Polymers: Enhanced CO ₂ Selectivity	75

4.5	Summary	79
	References	79
5	Fundamentals in Electromembrane Separation Processes	83
	<i>Heinrich Strathmann</i>	
5.1	Introduction	83
5.2	The Structures and Functions of Ion-Exchange Membranes	84
5.2.1	Ion-Exchange Membrane Materials and Structures	85
5.2.2	Preparation of Ion-Exchange Membranes	85
5.2.2.1	Preparation Procedure of Heterogeneous Ion-Exchange Membranes	86
5.2.2.2	Preparation of Homogeneous Ion-Exchange Membranes	86
5.2.2.3	Special Property Membranes	88
5.3	Transport of Ions in Membranes and Solutions	88
5.3.1	Electric Current and Ohm's Law in Electrolyte Solutions	89
5.3.2	Mass Transport in Membranes and Solutions	91
5.3.2.1	The Driving Force and Fluxes in Electromembrane Processes	91
5.3.2.2	Electrical Current and Fluxes of Ions	91
5.3.2.3	The Transport Number and the Membrane Permselectivity	92
5.3.2.4	Membrane Counterion Permselectivity	93
5.3.2.5	Water Transport in Electrodialysis	94
5.4	The Principle of Electromembrane Processes	95
5.4.1	Electrodialysis	95
5.4.1.1	Electrodialysis System and Process Design	96
5.4.1.2	Electrodialysis Process Costs	102
5.4.2	Electrodialysis with Bipolar Membranes	107
5.4.2.1	Electrodialysis with Bipolar Membrane System and Process Design	108
5.4.2.2	Electrodialysis with Bipolar Membrane Process Costs	110
5.4.3	Continuous Electrodeionization	113
5.4.3.1	System Components and Process Design Aspects	113
5.4.3.2	Operational Problems in Practical Application of Electrodeionization	115
5.4.4	Other Electromembrane Separation Processes	115
	References	118
6	Fouling in Membrane Processes	121
	<i>Anthony G. Fane, Tzyy H. Chong, and Pierre Le-Clech</i>	
6.1	Introduction	121
6.1.1	Characteristics of Fouling	121
6.1.2	Causes of Fouling	123
6.1.3	Fouling Mechanisms and Theory	125
6.1.4	Critical and Sustainable Flux	125
6.1.5	Fouling and Operating Mode	126
6.2	Low-Pressure Processes	126

6.2.1	Particulate Fouling	126
6.2.2	Colloidal and Macrosolute Fouling	127
6.2.3	Biofouling and Biofilms	128
6.2.4	Case Studies	128
6.2.4.1	Water Treatment and Membrane Pretreatment	128
6.2.4.2	Membrane Bioreactor (MBR)	129
6.3	High-Pressure Processes	130
6.3.1	Particulate and Colloidal Fouling	130
6.3.2	Biofouling	132
6.3.3	Scale Formation	133
6.3.4	Cake-Enhanced Osmotic Pressure	135
6.4	Conclusions	136
	References	136
7	Energy and Environmental Issues and Impacts of Membranes in Industry	139
	<i>William J. Koros, Adam Kratochvil, Shu Shu, and Shabbir Husain</i>	
7.1	Introduction	139
7.2	Hydrodynamic Sieving (MF and UF) Separations	141
7.3	Fractionation of Low Molecular Weight Mixtures (NF, D, RO, GS)	142
7.4	Reverse Osmosis – The Prototype Large-Scale Success	144
7.5	Energy-Efficiency Increases – A Look to the Future	145
7.5.1	Success Stories Built on Existing Membrane Materials and Formation Technology	146
7.5.2	Future Opportunities Relying Upon Developmental Membrane Materials and Formation Technology	149
7.5.2.1	High-Performance Olefin–Paraffin Separation Membranes	149
7.5.2.2	Coal Gasification with CO ₂ Capture for Sequestration	154
7.6	Key Hurdles to Overcome for Broadly Expanding the Membrane-Separation Platform	158
7.7	Some Concluding Thoughts	160
	References	161
8	Membrane Gas-Separation: Applications	167
	<i>Richard W. Baker</i>	
8.1	Industry Background	167
8.2	Current Membrane Gas-Separation Technology	167
8.2.1	Membrane Types and Module Configurations	168
8.2.1.1	Hollow Fine Fiber Membranes and Modules	169
8.2.1.2	Capillary Fiber Membranes and Modules	170
8.2.1.3	Flat-Sheet Membranes and Spiral-Wound Modules	170
8.2.2	Module Size	170
8.3	Applications of Gas-Separation Membranes	171
8.3.1	Nitrogen from Air	171

8.3.2	Air Drying	173
8.3.3	Hydrogen Separation	175
8.3.4	Natural-Gas Treatment	178
8.3.4.1	Carbon-Dioxide Separation	179
8.3.4.2	Separation of Heavy Hydrocarbons	182
8.3.4.3	Nitrogen Separation from High-Nitrogen Gas	182
8.3.5	Vapor/Gas Separations in Petrochemical Operations	183
8.4	Future Applications	186
8.4.1	CO ₂ /N ₂ Separations	186
8.4.2	CO ₂ /H ₂ Separations	188
8.4.3	Water/Ethanol Separations	189
8.4.4	Separation of Organic Vapor Mixtures	191
8.5	Summary/Conclusion	191
	References	192

9	CO₂ Capture with Membrane Systems	195
	<i>Rune Bredesen, Izumi Kumakiri, and Thijs Peters</i>	
9.1	Introduction	195
9.1.1	CO ₂ and Greenhouse-Gas Problem	195
9.1.2	CO ₂ Capture Processes and Technologies	196
9.2	Membrane Processes in Energy Systems with CO ₂ Capture	199
9.2.1	Processes Including Oxygen-Separation Membranes	199
9.2.2	Precombustion Decarbonization Processes Including Hydrogen and Carbon Dioxide Membrane Separation	202
9.2.3	Postcombustion Capture Processes with Membrane Separation	205
9.3	Properties of Membranes for Hydrogen, Oxygen, and Carbon Dioxide Separation	206
9.3.1	Membranes for Oxygen Separation in Precombustion Decarbonization and Oxy-Fuel Processes	206
9.3.1.1	Flux and Separation	206
9.3.1.2	Stability Issues	207
9.3.2	Membranes for Hydrogen Separation in Precombustion Decarbonization	207
9.3.2.1	Microporous Membranes	208
9.3.2.2	Dense Metal Membranes	209
9.3.2.3	Stability Issues	209
9.3.2.4	Dense Ceramic Membranes	210
9.3.3	Membranes for CO ₂ Separation in Precombustion Decarbonization	211
9.3.4	CO ₂ Separation in Postcombustion Capture	211
9.3.4.1	CO ₂ Separation Membranes	211
9.3.4.2	Membrane Contactors for CO ₂ Capture	212
9.4	Challenges in Membrane Operation	212

9.4.1	Diffusion Limitation in Gas-Phase and Membrane Support	212
9.4.2	Membrane Module Design and Catalyst Integration	214
9.5	Concluding Remarks	216
	References	216
10	Seawater and Brackish-Water Desalination with Membrane Operations	221
	<i>Raphael Semiat and David Hasson</i>	
10.1	Introduction: The Need for Water	221
10.2	Membrane Techniques in Water Treatment	221
10.3	Reverse-Osmosis Desalination: Process and Costs	226
10.3.1	Quality of Desalinated Water	228
10.3.2	Environmental Aspects	229
10.3.3	Energy Issues	230
10.4	Treatment of Sewage and Polluted Water	232
10.4.1	Membrane Bioreactors	234
10.4.2	Reclaimed Wastewater Product Quality	234
10.5	Fouling and Prevention	235
10.5.1	How to Prevent	236
10.5.2	Membrane Cleaning	237
10.6	R&D Directions	237
10.6.1	Impending Water Scarcity	237
10.6.2	Better Membranes	237
10.6.3	New Membranes-Based Desalination Processes	238
10.7	Summary	240
	References	240
11	Developments in Membrane Science for Downstream Processing	245
	<i>João G. Crespo</i>	
11.1	Introduction	245
11.1.1	Why Membranes for Downstream Processing?	245
11.2	Constraints and Challenges in Downstream Processing	246
11.2.1	External Mass-Transport Limitations	246
11.2.2	Membrane Fouling	247
11.2.3	Membrane Selectivity	249
11.3	Concentration and Purification of <i>Small</i> Bioactive Molecules	249
11.3.1	Electrodialysis	250
11.3.2	Pervaporation	251
11.3.3	Nanofiltration	253
11.4	Concentration and Purification of <i>Large</i> Bioactive Molecules	255
11.4.1	Ultrafiltration	256
11.4.2	Membrane Chromatography	260
11.5	Future Trends and Challenges	261
	References	262

12	Integrated Membrane Processes	265
	<i>Enrico Drioli and Enrica Fontananova</i>	
12.1	Introduction	265
12.2	Integrated Membrane Processes for Water Desalination	266
12.3	Integrated Membrane Process for Wastewater Treatment	271
12.4	Integrated Membrane System for Fruit-Juices Industry	274
12.5	Integrated Membrane Processes in Chemical Production	276
12.6	Conclusions	281
	References	281
Part Two	Transformation	285
13	Fundamental of Chemical Membrane Reactors	287
	<i>Giuseppe Barbieri and Francesco Scura</i>	
13.1	Introduction	287
13.2	Membranes	289
13.3	Membrane Reactors	294
13.3.1	Mass Balance	294
13.3.2	Energy Balance	296
13.4	Catalytic Membranes	301
13.5	Thermodynamic Equilibrium in Pd-Alloy Membrane Reactor	301
13.6	Conclusions	303
	References	306
14	Mathematical Modeling of Biochemical Membrane Reactors	309
	<i>Endre Nagy</i>	
14.1	Introduction	309
14.2	Membrane Bioreactors with Membrane as Bioreactor	310
14.2.1	Enzyme Membrane Reactor	311
14.2.2	Whole-Cell Membrane Bioreactor	312
14.3	Membrane Bioreactors with Membrane as Separation Unit	312
14.3.1	Moving-Bed Biofilm Membrane reactor	312
14.3.2	Wastewater Treatment by Whole-Cell Membrane Reactor	313
14.3.3	Membrane Fouling	313
14.4	Mathematical Modeling of Membrane Bioreactor	314
14.4.1	Modeling of Enzyme Membrane Layer/Biofilm Reactor	314
14.4.2	Concentration Distribution and Mass-Transfer Rates for Real Systems	318
14.4.3	Prediction of the Convective Velocity through Membrane with Cake and Polarization Layers	321
14.4.4	Convective Flow Profile in a Hollow-Fiber Membrane	323
14.4.4.1	Without Cake and Polarization Layers	323
14.4.4.2	With Cake and Polarization Layer	324

14.4.5	Mass Transport in the Feed Side of the Hollow-Fiber Membrane Bioreactor	325
14.5	Modeling of the MBR with Membrane Separation Unit	327
14.5.1	Moving-Bed-Biofilm Membrane Reactor	327
14.5.2	Submerged or External MBR Process	327
14.5.3	Fouling in Submerged Membrane Module	328
14.6	Conclusions and Future Prospects	328
	References	332
15	Photocatalytic Membrane Reactors in the Conversion or Degradation of Organic Compounds	<i>335</i>
	<i>Raffaele Molinari, Angela Caruso, and Leonardo Palmisano</i>	
15.1	Introduction	335
15.2	Fundamentals on Heterogeneous Photocatalysis	336
15.2.1	Mechanism	336
15.2.2	Photocatalysts: Properties and New Semiconductor Materials Used for Photocatalytic Processes	336
15.2.2.1	Titanium Dioxide	338
15.2.2.2	Modified Photocatalysts	338
15.3	Photocatalytic Parameters	340
15.4	Applications of Photocatalysis	341
15.4.1	Total Oxidations	341
15.4.2	Selective Oxidations	343
15.4.3	Reduction Reactions	344
15.4.4	Functionalization	344
15.4.5	Hydrogen Production	345
15.4.6	Combination of Heterogeneous Photocatalysis with Other Operations	346
15.5	Advantages and Limits of the Photocatalytic Technologies	346
15.6	Membrane Photoreactors	348
15.6.1	Introduction	348
15.6.2	Membrane Photoreactor Configurations	348
15.6.2.1	Pressurized Membrane Photoreactors	349
15.6.2.2	Sucked (Submerged) Membrane Photoreactors	349
15.6.2.3	Membrane Contactor Photoreactors	350
15.6.3	Parameters Influencing the Photocatalytic Membrane Reactors (PMRs) Performance	352
15.6.4	Future Perspectives: Solar Energy	353
15.7	Case Study: Partial and Total Oxidation Reactions in PMRs	354
15.7.1	Degradation of Pharmaceutical Compounds in a PMR	354
15.7.2	Photocatalytic Production of Phenol from Benzene in a PMR	357
15.8	Conclusions	358
	References	358

16	Wastewater Treatment by Membrane Bioreactors	363
	<i>TorOve Leiknes</i>	
16.1	Introduction	363
16.2	Membranes in Wastewater Treatment	364
16.2.1	Background	364
16.2.2	Membranes Applied to Wastewater Treatment	365
16.3	Membrane Bioreactors (MBR)	368
16.3.1	Membrane-Bioreactor Configurations	368
16.3.1.1	Membrane Materials and Options	368
16.3.1.2	Process Configurations	371
16.3.2	Membrane-Bioreactor Basics	372
16.3.3	Membrane Fouling	374
16.3.3.1	Understanding Fouling	374
16.3.3.2	Dealing with Fouling	376
16.3.3.3	Cleaning Fouled Membranes	378
16.3.4	Defining Operating Conditions and Parameters in MBR Processes	379
16.3.4.1	Biological Operating Conditions	379
16.3.4.2	Membrane Filtration Operation	381
16.3.4.3	Optimizing MBR Operations	383
16.4	Prospects and Predictions of the MBR Process	384
16.4.1	Developments and Market Trends	384
16.4.2	An Overview of Commercially Available Systems	386
16.4.2.1	Flat-Sheet MBR Designs and Options	388
16.4.2.2	Tubular/Hollow-Fiber MBR Designs and Options	388
	References	391
17	Biochemical Membrane Reactors in Industrial Processes	397
	<i>Lidiella Giorno, Rosalinda Mazzei, and Enrico Drioli</i>	
17.1	Introduction	397
17.2	Applications at Industrial Level	398
17.2.1	Pharmaceutical Applications	399
17.2.2	Food Applications	402
17.2.3	Immobilization of Biocatalysts on Membranes	405
17.3	Conclusion	407
	References	407
18	Biomedical Membrane Extracorporeal Devices	411
	<i>Michel Y. Jaffrin and Cécile Legallais</i>	
18.1	General Introduction	411
18.1.1	Use of Membranes in the Medical Field	411
18.1.2	Historical Perspective	411
18.2	Hemodialyzers	413
18.2.1	Introduction	413
18.2.2	Physical Principles of Hemodialysis	414

18.2.3	Dialysis Requirements	415
18.2.4	Mass Transfers in a Hemodialyzer	416
18.2.4.1	Characterization of Hemodialyzers Performance	416
18.2.5	Hemofiltration and Hemodiafiltration	417
18.2.6	Various Types of Hemodialyzers	418
18.2.6.1	Various Types of Membranes	419
18.2.6.2	Optimization of Hemodialyzer Performance	420
18.3	Plasma Separation and Purification by Membrane	421
18.3.1	Introduction	421
18.3.2	The Baxter Autopheresis C System for Plasma Collection from Donors	421
18.3.3	Therapeutic Applications of Plasma Separation	422
18.3.3.1	Plasma Exchange	423
18.3.3.2	Selective Plasma Purification by Cascade Filtration	423
18.4	Artificial Liver	426
18.4.1	Introduction	426
18.4.2	Physical Principles	426
18.4.3	Convection + Adsorption Systems	428
18.4.4	Diffusion + Adsorption Systems	428
18.4.5	Future of Artificial Livers	429
18.4.6	Conclusions	430
	References	430

19	Membranes in Regenerative Medicine and Tissue Engineering	433
	<i>Sabrina Morelli, Simona Salerno, Antonella Piscioneri, Maria Rende, Carla Campana, Enrico Drioli, and Loredana De Bartolo</i>	
19.1	Introduction	433
19.2	Membranes for Human Liver Reconstruction	434
19.3	Human Lymphocyte Membrane Bioreactor	439
19.4	Membranes for Neuronal-Tissue Reconstruction	440
19.5	Concluding Remarks	443
	References	444

Part Three Membrane Contactors 447

20	Basics in Membrane Contactors	449
	<i>Alessandra Criscuoli</i>	
20.1	Introduction	449
20.2	Definition of Membrane Contactors	449
20.3	Mass Transport	452
20.4	Applications	455
20.5	Concluding Remarks	460
	References	460

21	Membrane Emulsification: Principles and Applications	463
	<i>Lidieta Giorno, Giorgio De Luca, Alberto Figoli, Emma Piacentini, and Enrico Drioli</i>	
21.1	Introduction	463
21.2	Membrane Emulsification Basic Concepts	465
21.3	Experimental Bases of Membrane Emulsification	468
21.3.1	Post-Emulsification Steps for Microcapsules Production	474
21.3.2	Membrane Emulsification Devices	476
21.4	Theoretical Bases of Membrane Emulsification	479
21.4.1	Torque and Force Balances	480
21.4.2	Surface-Energy Minimization	485
21.4.3	Microfluid Dynamics Approaches: The Shape of the Droplets	486
21.5	Membrane Emulsification Applications	488
21.5.1	Applications in the Food Industry	488
21.5.2	Applications in the Pharmaceutical Industry	489
21.5.3	Applications in the Electronics Industry	490
21.5.4	Other Applications	491
21.6	Conclusions	493
	References	494
22	Membrane Contactors in Industrial Applications	499
	<i>Soccorso Gaeta</i>	
22.1	Air Dehumidification: Results of Demonstration Tests with Refrigerated Storage Cells and with Refrigerated Trucks	505
22.2	Refrigerated Storage Cells	507
22.3	Refrigerated Trucks	508
22.4	Capture of CO ₂ from Flue Gas	510
	References	512
23	Extractive Separations in Contactors with One and Two Immobilized L/L Interfaces: Applications and Perspectives	513
	<i>Štefan Schlosser</i>	
23.1	Introduction	513
23.2	Contactors with Immobilized L/L Interfaces	516
23.3	Membrane-Based Solvent Extraction (MBSE) and Stripping (MBSS)	517
23.3.1	Case Studies	519
23.4	Pertraction through BLME	525
23.4.1	Case Studies	526
23.5	Pertraction through SLM	527
23.5.1	Case Studies	529

23.6	Comparison of Extractive Processes in HF Contactors and Pertraction through ELM	529
23.7	Outlook	529
	References	531

Index 543

List of Contributors

Richard W. Baker

Membrane Technology and Research, Inc.
1360 Willow Road
Menlo Park, CA 94025
USA

Giuseppe Barbieri

University of Calabria
Institute on Membrane Technology (ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Loredana De Bartolo

University of Calabria
Institute on Membrane Technology (ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Rune Bredesen

SINTEF Materials and Chemistry
P.O. Box 124
Blindern
0314 Oslo
Norway

Carla Campana

University of Calabria
Institute on Membrane Technology (ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

and

University of Calabria
Department of Chemical Engineering and Materials
Via P. Bucci, cubo 45/A
87030 Rende (CS)
Italy

Angela Caruso

University of Calabria
Department of Chemical Engineering and Materials
Via P. Bucci, cubo 45/A
87030 Rende (CS)
Italy

Tzyy H. Chong

Nanyang Technological University
Singapore Membrane Technology
Centre
School of Civil and Environmental
Engineering
Singapore
639798

Anthony G. Fane

University of New South Wales
UNESCO Centre for Membrane Science
& Technology
School of Chemical Sciences and
Engineering
Sydney, NSW 2052
Australia

João G. Crespo

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Requimte-CQFB
Departamento de Química
2829-516 Caparica
Portugal

and

Nanyang Technological University
Singapore Membrane Technology
Centre
School of Civil and Environmental
Engineering
Singapore
639798

Enrico Drioli

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Alberto Figoli

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

and

University of Calabria
Department of Chemical Engineering
and Materials
Via P. Bucci, cubo 44/A
87030 Rende (CS)
Italy

Enrica Fontananova

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Alessandra Criscuoli

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

and

University of Calabria
Department of Chemical Engineering
and Materials
Via P. Bucci, cubo 44/A
87030 Rende (CS)
Italy

Soccorso Gaeta

GVS S.P.A.
Via Roma 50
40069 Zola Predosa (Bo)
Italy

Lidiella Giorno

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

David Hasson

Technion – Israel Institute of
Technology
Stephen and Nancy Grand Water
Research Institute
Wolfson Chemical Engineering
Department
Rabin Desalination Laboratory
Technion City
Haifa, 32000
Israel

Tzyy Haur

Nanyang Technological University
Singapore Membrane Technology
Centre
School of Civil and Environmental
Engineering
Singapore
639798

Dieter Hofmann

GKSS Research Center
Center for Biomaterial Development
of the Institute of Polymer Research
Kantstr. 55
14513 Teltow
Germany

Shabbir Husain

Georgia Institute of Technology
School of Chemical & Biomolecular
Engineering
Atlanta, GA 30332-0100
USA

Michel Y. Jaffrin

UMR CNRS 6600
Technological University of Compiegne
60200 Compiegne
France

William J. Koros

Georgia Institute of Technology
School of Chemical & Biomolecular
Engineering
Atlanta, GA 30332-0100
USA

Adam Kratochvil

PRISM Membranes
Air Products and Chemicals, Inc.
St. Louis, Mo 63146
USA

Izumi Kumakiri

SINTEF Materials Technology
P.O. Box 124
Blindern
0314 Oslo
Norway

Pierre Le-Clech

University of New South Wales
UNESCO Centre for Membrane Science
& Technology
School of Chemical Sciences and
Engineering
Sydney, NSW 2052
Australia

Cécile Legallais

UMR CNRS 6600
Technological University of Compiegne
60200 Compiegne
France

TorOve Leiknes

NTNU - Norwegian University of
Science and Technology
Department of Hydraulic and
Environmental Engineering
S.P. Andersensvei 5
7491 Trondheim
Norway

Giorgio De Luca

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Rosalinda Mazzei

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

and

University of Calabria
Department of Ecology
Via P. Bucci 6/B
87036 Rende (CS)
Italy

Raffaele Molinari

University of Calabria
Department of Chemical Engineering
and Materials
Via P. Bucci
87030 Rende (CS)
Italy

Sabrina Morelli

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

T.M. Murphy

The University of Texas at Austin
Department of Chemical Engineering
Austin, TX 78712
USA

Endre Nagy

University of Pannonia
Research Institute of Chemical and
Process Engineering
P.O. Box 158
8201, Veszprém
Hungary

Grant T. Offord

The University of Texas at Austin
Department of Chemical Engineering
Austin, TX 78712
USA

Leonardo Palmisano

University of Palermo
Department of Chemical Engineering
Processes and Materials
'Schiavello-Grillone' Photocatalysis
Group
viale delle Scienze
90128 Palermo
Italy

Don R. Paul

The University of Texas at Austin
 Department of Chemical Engineering
 Austin, TX 78712
 USA

Thijs Peters

SINTEF Materials Technology
 P.O. Box 124
 Blindern
 0314 Oslo
 Norway

Emma Piacentini

University of Calabria
 Institute on Membrane Technology
 (ITM-CNR)
 Via P. Bucci, 17/C
 87030 Rende (CS)
 Italy

Antonella Piscioneri

University of Calabria
 Institute of Membrane Technology
 National Research Council of Italy
 ITM-CNR
 Via P. Bucci, cubo 17/C
 87030 Rende (CS)
 Italy

and

University of Calabria
 Department of Cell Biology
 via P. Bucci
 87030 Rende (CS)
 Italy

Maria Rende

University of Calabria
 Institute on Membrane Technology
 (ITM-CNR)
 Via P. Bucci, 17/C
 87030 Rende (CS)
 Italy

and

University of Calabria
 Department of Chemical Engineering
 and Materials
 Via P. Bucci, cubo 45/A
 87030 Rende (CS)
 Italy

Simona Salerno

University of Calabria
 Institute on Membrane Technology
 (ITM-CNR)
 Via P. Bucci, 17/C
 87030 Rende (CS)
 Italy

Štefan Schlosser

Slovak University of Technology
 Institute of Chemical and
 Environmental Engineering
 Radlinského 9
 812 37 Bratislava
 Slovakia

Raphael Semiat

Technion – Israel Institute of
 Technology
 Wolfson Chemical Engineering
 Department
 Rabin Desalination Laboratory
 Stephen and Nancy Grand Water
 Research Institute
 Technion City
 Haifa, 32000
 Israel

Francesco Scura

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Shu Shu

Georgia Institute of Technology
School of Chemical & Biomolecular
Engineering
Atlanta, GA 30332-0100
USA

Heinrich Strathmann

University of Stuttgart
Institute of Chemical Technology
Böblingerstr. 72
70199 Stuttgart
Germany

Heru Susanto

Universität Duisburg-Essen
Lehrstuhl für Technische Chemie II
45117 Essen
Germany

Elena Tocci

University of Calabria
Institute on Membrane Technology
(ITM-CNR)
Via P. Bucci, 17/C
87030 Rende (CS)
Italy

Mathias Ulbricht

Universität Duisburg-Essen
Lehrstuhl für Technische Chemie II
45117 Essen
Germany

Bart Van der Bruggen

K.U. Leuven, Department of Chemical
Engineering
Section Applied Physical Chemistry and
Environmental Technology
W. de Crolylaan 46
3001 Heverlee (Leuven)
Belgium

Introduction

Membrane processes are state of the art technologies in various industrial sectors, including gas separation, wastewater treatment, food processing and medical applications.

Modelling methodologies are contributing significantly to the knowledge-based development of membrane materials and engineering.

Micro-ultrafiltration and reverse osmosis are mature technologies for separations based on molecular exclusion and solution-diffusion mechanisms, respectively. Cleaning and maintenance procedures able to control fouling to an acceptable extent have made these processes commercially suitable.

Some of the largest plants for seawater desalination, wastewater treatment and gas separation are already based on membrane engineering. For example, the Ashkelon Desalination Plant for seawater reverse osmosis (SWRO), in Israel, has been fully operational since December 2005 and produces more than 100 million m³ of desalinated water per year. One of the largest submerged membrane bioreactor unit in the world was recently built in Porto Marghera (Italy) to treat tertiary water. The growth in membrane installations for water treatment in the past decade has resulted in a decreased cost of desalination facilities, with the consequence that the cost of the reclaimed water for membrane plants has also been reduced.

Membranes are growing significantly also in gas separation, for example, the current market size of carbon-dioxide separation from natural gas is more than 70 million Euro/year.

Medical applications are among the most important in the membrane market, with hemodialysis, blood oxygenators, plasma separation and fractionation being the traditional areas of applications, while artificial and bioartificial organs and regenerative medicine represent emerging areas in the field.

Nanofiltration has achieved a good stage of development, gaining attention in various applications for separations based on both molecular exclusion and charge interaction as well as on the solution-diffusion mechanism. In particular, nanofiltration is considered among the most suitable technologies for solvent separation. More recent processes such as membrane reactors, membrane contactors, and membranes in life science are also developing very rapidly. The optimal design of

chemical transformation processes with control of reagent supply and/or product removal through catalytic membranes and membrane reactors is one of the most attractive solutions in process intensification. The catalytic action of biocatalysts is extremely efficient, selective and highly stereospecific when compared to conventional chemical catalysts. Membrane bioreactors are particularly attractive in terms of ecocompatibility, because they do not require additives, are able to operate at moderate temperature and pressure, reduce the formation of by-products, while permitting the production of high valuable coproducts. This may allow challenges in developing new production lines moving towards zero discharge to be faced. The development of catalytic membrane reactors for high-temperature applications became realistic more recently, with the development of high-temperature-resistant membranes.

The major market for membrane bioreactors is represented by wastewater treatment with the use of submerged modules configuration. These are considered among the best available technologies by the European Directives on Environment. Membrane bioreactors are also applied in food, red and white biotechnology. In these cases, the external loop configuration is used.

Membrane contactors, including membrane crystallizers and membrane emulsifiers, are among the most recent membrane operations with growing interest in various industrial sectors. For example, membrane emulsification has grown from the 1990s, when it was first developed in Japan, to nowadays with applications in food, chemical, pharmaceutical and cosmetic fields. In Europe, the research at the academic level has achieved a thorough knowledge both from experimental and theoretical points of view. This is fuelling the industrial interest towards the membrane emulsification technology, especially for those productions that involve labile bioactive molecules.

In general, nowadays the attention towards membrane science and technology is increasing significantly. Drivers of this interest include the need for technologies to enable sustainable production, directives and regulations about the use of eco-friendly technologies, consumer demand for high-quality and safe products, public concern about environment, and stakeholder confidence in and acceptance of advanced technologies.

Current initiatives recognize that a sustainable solution to the increasing demand of goods and energy is in the rational integration and implementation of new technologies able to achieve concrete benefits for manufacturing and processing, substantially increasing process precision, reducing equipment size, saving energy, reducing costs, and minimizing environmental impact.

Membranes and membrane processes are best suited in this context as their basic aspects well satisfy the requirements of process intensification for a sustainable industrial production. In fact, they are precise and flexible processing techniques, able to maximize phase contact, integrate conversion and separation processes, with improved efficiency and with significantly lower energy requirements compared to conventional techniques.

This multiauthor book highlights the current state and advances in membranes and membrane operations referring to three major roles of the membrane: mole-

cular separation, (bio)chemical transformation and phase contactors. Each topic includes fundamentals and applications of membranes and membrane operations.

The largest section is constituted by membranes in molecular separation, which is the most traditional application of membranes. Significant advances of membrane science and technologies are expected in transformation processes and membrane contactors for conventional and innovative applications.