

Plant Secondary Metabolites

Occurrence, Structure and Role in the Human Diet

Edited by

Alan Crozier

Professor of Plant Biochemistry and Human Nutrition
Institute of Biomedical and Life Sciences
University of Glasgow, UK

Michael N. Clifford

Professor of Food Safety
Centre for Nutrition and Food Safety
School of Biomedical and Life Sciences
University of Surrey, UK

Hiroshi Ashihara

Professor of Plant Biochemistry
Department of Biology
Ochanomizu University, Tokyo, Japan

© 2006 by Blackwell Publishing Ltd

Editorial Offices:

Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK

Tel: +44 (0)1865 776868

Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014-8300, USA

Tel: +1 515 292 0140

Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia

Tel: +61 (0)3 8359 1011

The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

First published 2006 by Blackwell Publishing Ltd

ISBN-13: 978-1-4051-2509-3

ISBN-10: 1-4051-2509-8

Library of Congress Cataloging-in-Publication Data

Plant secondary metabolites: occurrence, structure and role in the human diet/edited by Alan Crozier, Michael N. Clifford, Hiroshi Ashihara.

p.;cm.

Includes bibliographical references and index.

ISBN-13: 978-1-4051-2509-3 (hardback: alk.paper)

ISBN-10: 1-4051-2509-8 (hardback: alk.paper)

1. Plants—Metabolism. 2. Metabolism, Secondary. 3. Botanical chemistry.

I. Crozier, Alan. II. Clifford, M. N. (Michael N.) III. Ashihara, Hiroshi.

[DNLM: 1. Plants, Edible—metabolism. 2. Food Analysis—methods. 3. Heterocyclic Compounds—chemistry.

4. Heterocyclic Compounds—metabolism. 5. Plants, Edible—chemistry. QK 887 P713 2006]

QK881.P55 2006

572'.2—dc22

2006004363

A catalogue record for this title is available from the British Library

Set in 10/12 pt Minion

by Newgen Imaging Systems (P) Ltd., Chennai, India

Printed and bound in Singapore

by COS Printers Pte, Ltd

The publisher's policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices.

Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on Blackwell Publishing, visit our website:

www.blackwellpublishing.com

Dedication

To Diego Hermoso Borges – a very special, brave boy

Contents

Contributors

xi

1	Phenols, Polyphenols and Tannins: An Overview <i>Alan Crozier, Indu B. Jaganath and Michael N. Clifford</i>	1
1.1	Introduction	1
1.2	Classification of phenolic compounds	2
1.2.1	Flavonoids	2
1.2.1.1	Flavonols	4
1.2.1.2	Flavones	4
1.2.1.3	Flavan-3-ols	5
1.2.1.4	Anthocyanidins	8
1.2.1.5	Flavanones	8
1.2.1.6	Isoflavones	9
1.2.2	Non-flavonoids	11
1.2.2.1	Phenolic acids	11
1.2.2.2	Hydroxycinnamates	12
1.2.2.3	Stilbenes	12
1.3	Biosynthesis	14
1.3.1	Phenolics and hydroxycinnamates	16
1.3.2	Flavonoids and stilbenes	17
1.3.2.1	The pathways to flavonoid formation	17
1.3.2.2	Isoflavonoid biosynthesis	18
1.3.2.3	Flavone biosynthesis	18
1.3.2.4	Formation of intermediates in the biosynthesis of flavonols, flavan-3-ols, anthocyanins and proanthocyanidins	19
1.3.2.5	Stilbene biosynthesis	19
1.4	Genetic engineering of the flavonoid biosynthetic pathway	19
1.4.1	Manipulating flavonoid biosynthesis	20
1.4.2	Constraints in metabolic engineering	21
1.5	Databases	21

Acknowledgements	21
References	22
2 Sulphur-Containing Compounds <i>Richard Mithen</i>	25
2.1 Introduction	25
2.2 The glucosinolates-myrosinase system	26
2.3 Chemical diversity of glucosinolates in dietary crucifers	27
2.4 Biosynthesis	29
2.5 Genetic factors affecting glucosinolate content	31
2.6 Environmental factors affecting glucosinolate content	31
2.7 Myrosinases and glucosinolate hydrolysis	32
2.8 Hydrolytic products	33
2.9 Metabolism and detoxification of isothiocyanates	34
2.10 The Alliin-alliinase system	34
2.11 Biological activity of sulphur-containing compounds	37
2.12 Anti-nutritional effects in livestock and humans	38
2.13 Beneficial effects of sulphur-containing compounds in the human diet	38
2.13.1 Epidemiological evidence	38
2.13.2 Experimental studies and mechanisms of action	39
2.13.2.1 Inhibition of Phase I CYP450	39
2.13.2.2 Induction of Phase II enzymes	39
2.13.2.3 Antiproliferative activity	40
2.13.2.4 Anti-inflammatory activity	40
2.13.2.5 Reduction in <i>Helicobacter pylori</i>	40
References	41
3 Terpenes <i>Andrew J. Humphrey and Michael H. Beale</i>	47
3.1 Introduction	47
3.2 The biosynthesis of IPP and DMAPP	49
3.2.1 The mevalonic acid pathway	49
3.2.2 The 1-deoxyxylulose 5-phosphate (or methylerythritol 4-phosphate) pathway	52
3.2.3 Interconversion of IPP and DMAPP	54
3.2.4 Biosynthesis of IPP and DMAPP in green plants	55
3.3 Enzymes of terpene biosynthesis	55
3.3.1 Prenyltransferases	55
3.3.2 Mechanism of chain elongation	56
3.3.3 Terpene synthases (including cyclases)	58
3.4 Isoprenoid biosynthesis in the plastids	59
3.4.1 Biosynthesis of monoterpenes	59
3.4.2 Biosynthesis of diterpenes	65
3.4.3 Biosynthesis of carotenoids	74
3.5 Isoprenoid biosynthesis in the cytosol	78
3.5.1 Biosynthesis of sesquiterpenes	78
3.5.2 Biosynthesis of triterpenes	85

3.6	Terpenes in the environment and human health: future prospects	90
	References	94
4	Alkaloids <i>Katherine G. Zulak, David K. Liscombe, Hiroshi Ashihara and Peter J. Facchini</i>	102
4.1	Introduction	102
4.2	Benzylisoquinoline alkaloids	102
4.3	Tropane alkaloids	107
4.4	Nicotine	111
4.5	Terpenoid indole alkaloids	113
4.6	Purine alkaloids	118
4.7	Pyrrolizidine alkaloids	122
4.8	Other alkaloids	125
4.8.1	Quinolizidine alkaloids	125
4.8.2	Steroidal glycoalkaloids	127
4.8.3	Coniine	129
4.8.4	Betalains	130
4.9	Metabolic engineering	130
	Acknowledgements	131
	References	131
5	Acetylenes and Psoralens <i>Lars P. Christensen and Kirsten Brandt</i>	137
5.1	Introduction	137
5.2	Acetylenes in common food plants	138
5.2.1	Distribution and biosynthesis	138
5.2.2	Bioactivity	147
5.2.2.1	Antifungal activity	147
5.2.2.2	Neurotoxicity	149
5.2.2.3	Allergenicity	150
5.2.2.4	Anti-inflammatory, anti-platelet-aggregatory and antibacterial effects	151
5.2.2.5	Cytotoxicity	152
5.2.2.6	Falcarinol and the health-promoting properties of carrots	153
5.3	Psoralens in common food plants	155
5.3.1	Distribution and biosynthesis	155
5.3.2	Bioactivity	159
5.3.2.1	Phototoxic effects	159
5.3.2.2	Inhibition of human cytochrome P450	162
5.3.2.3	Reproductive toxicity	162
5.3.2.4	Antifungal and antibacterial effects	162
5.4	Perspectives in relation to food safety	163
	References	164
6	Functions of the Human Intestinal Flora: The Use of Probiotics and Prebiotics <i>Kieran M. Tuohy and Glenn R. Gibson</i>	174

6.1	Introduction	174
6.2	Composition of the gut microflora	174
6.3	Successional development and the gut microflora in old age	177
6.4	Modulation of the gut microflora through dietary means	178
6.4.1	Probiotics	179
6.4.1.1	Probiotics in relief of lactose maldigestion	180
6.4.1.2	Use of probiotics to combat diarrhoea	180
6.4.1.3	Probiotics for the treatment of inflammatory bowel disease	182
6.4.1.4	Impact of probiotics on colon cancer	183
6.4.1.5	Impact of probiotics on allergic diseases	184
6.4.1.6	Use of probiotics in other gut disorders	184
6.4.1.7	Future probiotic studies	185
6.4.2	Prebiotics	186
6.4.2.1	Modulation of the gut microflora using prebiotics	186
6.4.2.2	Health effects of prebiotics	189
6.4.3	Synbiotics	192
6.5	In vitro and in vivo measurement of microbial activities	193
6.6	Molecular methodologies for assessing microflora changes	194
6.6.1	Fluorescent in situ hybridization	195
6.6.2	DNA microarrays – microbial diversity and gene expression studies	195
6.6.3	Monitoring gene expression – subtractive hybridization and in situ PCR/FISH	196
6.6.4	Proteomics	196
6.7	Assessing the impact of dietary modulation of the gut microflora – does it improve health, what are the likelihoods for success and what are the biomarkers of efficacy?	197
6.8	Justification for the use of probiotics and prebiotics to modulate the gut flora composition	198
	References	199
7	Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-Based Dietary Components <i>Alan Crozier, Takao Yokota, Indu B. Jaganath, Serena Marks, Michael Saltmarsh and Michael N. Clifford</i>	208
7.1	Introduction	208
7.2	Dietary phytochemicals	209
7.3	Vegetables	211
7.3.1	Root crops	212
7.3.2	Onions and garlic	214
7.3.3	Cabbage family and greens	217
7.3.4	Legumes	219
7.3.5	Lettuce	222

7.3.6	Celery	223
7.3.7	Asparagus	223
7.3.8	Avocados	224
7.3.9	Artichoke	224
7.3.10	Tomato and related plants	225
7.3.10.1	Tomatoes	225
7.3.10.2	Peppers and aubergines	227
7.3.11	Squashes	228
7.4	Fruits	229
7.4.1	Apples and pears	229
7.4.2	Apricots, nectarines and peaches	231
7.4.3	Cherries	231
7.4.4	Plums	231
7.4.5	Citrus fruits	232
7.4.6	Pineapple	235
7.4.7	Dates	235
7.4.8	Mango	236
7.4.9	Papaya	237
7.4.10	Fig	238
7.4.11	Olive	238
7.4.12	Soft fruits	240
7.4.13	Melons	245
7.4.14	Grapes	245
7.4.15	Rhubarb	248
7.4.16	Kiwi fruit	249
7.4.17	Bananas and plantains	250
7.4.18	Pomegranate	251
7.5	Herbs and spices	252
7.6	Cereals	258
7.7	Nuts	260
7.8	Algae	262
7.9	Beverages	263
7.9.1	Tea	263
7.9.2	Maté	271
7.9.3	Coffee	273
7.9.4	Cocoa	277
7.9.5	Wines	278
7.9.6	Beer	281
7.9.7	Cider	285
7.9.8	Scotch whisky	287
7.10	Databases	288
	References	288
8	Absorption and Metabolism of Dietary Plant Secondary Metabolites	
	<i>Jennifer L. Donovan, Claudine Manach, Richard M. Faulks and Paul A. Kroon</i>	303
8.1	Introduction	303

8.2	Flavonoids	303
8.2.1	Mechanisms regulating the bioavailability of flavonoids	304
8.2.1.1	Absorption	304
8.2.1.2	Intestinal efflux of absorbed flavonoids	308
8.2.1.3	Metabolism	309
8.2.1.4	Elimination	310
8.2.2	Overview of mechanisms that regulate the bioavailability of flavonoids	311
8.2.3	Flavonoid metabolites identified in vivo and their biological activities	311
8.2.3.1	Approaches to the identification of flavonoid conjugates in plasma and urine	312
8.2.3.2	Flavonoid conjugates identified in plasma and urine	315
8.2.4	Pharmacokinetics of flavonoids in humans	317
8.3	Hydroxycinnamic acids	321
8.4	Gallic acid and ellagic acid	323
8.5	Dihydrochalcones	324
8.6	Betalains	324
8.7	Glucosinolates	325
8.7.1	Hydrolysis of glucosinolates and product formation	327
8.7.2	Analytical methods	329
8.7.3	Absorption of isothiocyanates from the gastrointestinal tract	330
8.7.4	Intestinal metabolism and efflux	330
8.7.5	Distribution and elimination	331
8.8	Carotenoids	332
8.8.1	Mechanisms regulating carotenoid absorption	334
8.8.2	Effects of processing	335
8.8.3	Measuring absorption	335
8.8.4	Transport	337
8.8.5	Tissue distribution	338
8.8.6	Metabolism	339
8.8.7	Toxicity	340
8.8.8	Other metabolism	340
8.9	Conclusions	341
	References	341
	Index	353

Contributors

Hiroshi Ashihara	Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
Michael H. Beale	CPI Division, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
Kirsten Brandt	School of Agriculture, Food and Rural Development, University of Newcastle upon Tyne, King George VI Building, Newcastle upon Tyne NE1 7RU, UK
Lars P. Christensen	Department of Food Science, Danish Institute of Agricultural Sciences, Research Centre Aarslev, Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
Michael N. Clifford	Food Safety Research Group, Centre for Nutrition and Food Safety, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
Alan Crozier	Graham Kerr Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
Jennifer L. Donovan	Laboratory of Drug Disposition and Pharmacogenetics, 173 Ashley Ave., Medical University of South Carolina, Charleston, SC 29425, USA
Peter J. Facchini	Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
Richard M. Faulks	Nutrition Division Institute of Food Research, Colney Lane, Norwich NR4 7UA, UK
Glenn R. Gibson	Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
Andrew J. Humphrey	CPI Division, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2 JQ, UK
Indu B. Jaganath	Graham Kerr Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

Paul A. Kroon	Nutrition Division, Institute of Food Research, Colney Lane, Norwich NR4 7UA, UK
David K. Liscombe	Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Claudine Manach	Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix, 63122 St Genes-Champanelle, France
Serena C. Marks	Graham Kerr Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
Richard Mithen	Nutrition Division, Institute of Food Research, Colney Lane, Norwich NR4 7UA, UK
Michael Saltmarsh	Inglehurst Foods, 53 Blackberry Lane, Four Marks, Alton, Hampshire GU35 5DF, UK
Kieran M. Tuohy	Food Microbial Sciences Unit, School of Food Biosciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
Takao Yokota	Department of Biosciences, Teikyo University, Utsunomiya 320-85551, Japan
Katherine G. Zulak	Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada