

ANNUAL PLANT REVIEWS

VOLUME 39

ANNUAL PLANT REVIEWS

VOLUME 39

Functions and Biotechnology of Plant Secondary Metabolites

Second edition

Edited by

Michael Wink

Professor of Pharmaceutical Biology

Institute of Pharmacy and Molecular Biotechnology

Heidelberg University

Germany

 WILEY-BLACKWELL

A John Wiley & Sons, Ltd., Publication

This edition first published 2010
© 2010 Blackwell Publishing Ltd

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing programme has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

Editorial offices

9600 Garsington Road, Oxford, OX4 2DQ, United Kingdom
2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Functions and biotechnology of plant secondary metabolites / edited by Michael Wink. – 2nd ed.

p. cm. – (Annual plant reviews ; v. 39)

Rev. ed. of: Functions of plant secondary metabolites and their exploitation in biotechnology.

Includes bibliographical references and index.

ISBN 978-1-4051-8528-8 (hardback : alk. paper)

1. Plant metabolites. 2. Metabolism, Secondary. 3. Plant biotechnology.

I. Wink, Michael. II. Functions of plant secondary metabolites and their exploitation in biotechnology. III. Series: Annual plant reviews ; v. 39.

QK887.F86 2010

572'.42-dc22

2009031828

A catalogue record for this book is available from the British Library.

Set in 10/12 pt Palatino by Aptara® Inc., New Delhi, India
Printed in Singapore

Annual Plant Reviews

A series for researchers and postgraduates in the plant sciences. Each volume in this series focuses on a theme of topical importance and emphasis is placed on rapid publication.

Editorial Board:

Prof. Jeremy A. Roberts (Editor-in-Chief), Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK;

Dr David Evans, School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP;

Prof. Hidemasa Imaseki, Obata-Minami 2419, Moriyama-ku, Nagoya 463, Japan;

Dr Michael T. McManus, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand;

Dr Jocelyn K.C. Rose, Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.

Titles in the series:

- 1. *Arabidopsis***
Edited by M. Anderson and J.A. Roberts
- 2. *Biochemistry of Plant Secondary Metabolism***
Edited by M. Wink
- 3. *Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology***
Edited by M. Wink
- 4. *Molecular Plant Pathology***
Edited by M. Dickinson and J. Beynon
- 5. *Vacuolar Compartments***
Edited by D.G. Robinson and J.C. Rogers
- 6. *Plant Reproduction***
Edited by S.D. O'Neill and J.A. Roberts
- 7. *Protein-Protein Interactions in Plant Biology***
Edited by M.T. McManus, W.A. Laing and A.C. Allan
- 8. *The Plant Cell Wall***
Edited by J.K.C. Rose
- 9. *The Golgi Apparatus and the Plant Secretory Pathway***
Edited by D.G. Robinson
- 10. *The Plant Cytoskeleton in Cell Differentiation and Development***
Edited by P.J. Hussey
- 11. *Plant-Pathogen Interactions***
Edited by N.J. Talbot
- 12. *Polarity in Plants***
Edited by K. Lindsey
- 13. *Plastids***
Edited by S.G. Moller
- 14. *Plant Pigments and their Manipulation***
Edited by K.M. Davies

15. **Membrane Transport in Plants**
Edited by M.R. Blatt
16. **Intercellular Communication in Plants**
Edited by A.J. Fleming
17. **Plant Architecture and Its Manipulation**
Edited by CGN Turnbull
18. **Plasmodesmata**
Edited by K.J. Oparka
19. **Plant Epigenetics**
Edited by P. Meyer
20. **Flowering and Its Manipulation**
Edited by C. Ainsworth
21. **Endogenous Plant Rhythms**
Edited by A. Hall and H. McWatters
22. **Control of Primary Metabolism in Plants**
Edited by W.C. Plaxton and M.T. McManus
23. **Biology of the Plant Cuticle**
Edited by M. Riederer
24. **Plant Hormone Signaling**
Edited by P. Hadden and S.G. Thomas
25. **Plant Cell Separation and Adhesion**
Edited by J.R. Roberts and Z. Gonzalez-Carranza
26. **Senescence Processes in Plants**
Edited by S. Gan
27. **Seed Development, Dormancy and Germination**
Edited by K.J. Bradford and H. Nonogaki
28. **Plant Proteomics**
Edited by C. Finnie
29. **Regulation of Transcription in Plants**
Edited by K. Grasser
30. **Light and Plant Development**
Edited by G. Whitlam
31. **Plant Mitochondria**
Edited by David C. Logan
32. **Cell Cycle Control and Plant Development**
Edited by D. Inzé
33. **Intracellular Signaling in Plants**
Edited by Z. Yang
34. **Molecular Aspects of Plant Disease Resistance**
Edited by Jane Parker
35. **Plant Systems Biology**
Edited by Gloria M. Coruzzi and Rodrigo A. Gutiérrez
36. **The Moss *Physcomitrella patens***
Edited by C.D. Knight, P.-F. Perroud and D.J. Cove
37. **Root Development**
Edited by Tom Beeckman
38. **Fruit Development and Seed Dispersal**
Edited by Lars Østergaard

CONTENTS

List of contributors	ix
Preface	xi
1 Introduction	1
<i>Michael Wink</i>	
1.1 Ecological function of secondary metabolites	1
1.2 Presence of defence and signal compounds at the right time and place	4
1.3 Molecular modes of action of SM	8
1.4 Biotechnology and utilization of SM	13
1.5 Conclusions	16
2 Molecular Modes of Action of Defensive Secondary Metabolites	21
<i>Michael Wink and Oskar Schimmer</i>	
2.1 Introduction	21
2.2 Molecular modes of action – an overview	22
2.3 Accumulation of defence and signal compounds in plants	128
2.4 Animal responses: detoxification mechanisms and adaptations	132
2.5 Concluding remarks	137
3 Chemical Defence in Marine Ecosystems	162
<i>Annika Putz and Peter Proksch</i>	
3.1 Introduction	162
3.2 Marine natural products in allelopathic interactions	165
3.3 Chemical defence against fouling	168
3.4 Chemical defences of marine invertebrates and algae against consumers	173
3.5 Favoured allocation of defensive metabolites in vulnerable and valuable parts of marine invertebrates and algae	182
3.6 The flexible response: stress-induced accumulation of defence metabolites and activation of protoxins	186
3.7 Endosymbionts as sources for allelochemicals found in marine invertebrates	193
3.8 Conclusions and outlook	201

4	Plant-Microbe Interactions and Secondary Metabolites with Antibacterial, Antifungal and Antiviral Properties <i>Jürgen Reichling</i>	214
4.1	Introduction	215
4.2	Phytoalexins	217
4.3	Antibacterial and antifungal agents of higher plants	232
4.4	Secondary metabolites from higher plants with antiviral properties	278
4.5	Conclusions	317
5	New Medical Applications of Plant Secondary Metabolites <i>Jörg Heilmann</i>	348
5.1	Introduction	349
5.2	Compounds with anticancer and chemopreventive activity	349
5.3	Antiviral compounds	359
5.4	Antimalarial drugs	360
5.5	Anti-inflammatory drugs	361
5.6	Antidepressant drugs	363
5.7	Anti-ischaemic drugs	364
5.8	Immunostimulatory drugs	365
5.9	Conclusions	366
6	Production of Natural Products by Plant Cell and Organ Cultures <i>August-Wilhelm Alfermann</i>	381
6.1	Introduction	381
6.2	Production of natural products by cell and organ cultures	383
6.3	Elicitation	383
6.4	Increase/decrease of product yields by genetic manipulation	384
6.5	Biosynthetic pathways delineation using RNA-interference	385
6.6	Mass cultivation of plant cell cultures	386
6.7	Production of recombinant proteins by plants and plant cell cultures	388
6.8	Production of plant natural products in microbes	389
6.9	Perspectives	390
	Index	399
	Colour plate (between pages 50 and 51)	

CONTRIBUTORS

August-Wilhelm Alfermann

University of Düsseldorf
Institute of Molecular Biology of Plants
Universitätsstr. 1
40225 Düsseldorf
Germany

Jörg Heilmann

University of Regensburg
Faculty of Natural Sciences
Pharmaceutical Biology
93040 Regensburg
Germany

Peter Proksch

University of Düsseldorf
Institute of Pharmaceutical Biology and Biotechnology
Universitätsstr. 1
40225 Düsseldorf
Germany

Annika Putz

University of Düsseldorf
Institute of Pharmaceutical Biology and Biotechnology
Universitätsstr. 1
40225 Düsseldorf
Germany

Jürgen Reichling

Ruprecht-Karls-University Heidelberg
Institute of Pharmacy and Molecular Biotechnology
Div. Biology
Im Neuenheimer Feld 364
69120 Heidelberg
Germany

Oskar Schimmer

Retired from

University Erlangen-Nürnberg

Institute of Botany and Pharmaceutical Biology

Erlangen

Germany

Michael Wink

Ruprecht-Karls-University Heidelberg

Institute of Pharmacy and Molecular Biotechnology

Div. Biology

Im Neuenheimer Feld 364

69120 Heidelberg

Germany

PREFACE

A characteristic feature of plants is their capacity to synthesize and store a wide variety of low-molecular-weight compounds, the so-called **secondary metabolites (SM)** or natural products. The number of described structures exceeds 100 000; the real number in nature is certainly much higher because only 20–30% of plants have been investigated in phytochemistry so far. In contrast to primary metabolites, which are essential for the life of every plant, the individual types of SM usually occur in a limited number of plants, indicating that they are not essential for primary metabolism, i.e. anabolism or catabolism.

Whereas SM had been considered to be waste products or otherwise useless compounds for many years, it has become evident over the last three decades that SM have important roles for the plants producing them: they may function as signal compounds within the plant, or between the plant, producing them and other plants, microbes, herbivores, predators of herbivores, pollinating or seed-dispersing animals. More often SM serve as defence chemicals against herbivorous animals (insects, molluscs, mammals), microbes (bacteria, fungi), viruses or plants competing for light, water and nutrients. Therefore, SM are ultimately important for the fitness of the plant producing them. Plants usually produce complex mixtures of SM, often representing different classes, such as alkaloids, phenolics or terpenoids. It is likely that the individual components of a mixture can exert not only additive but certainly also synergistic effects by attacking more than a single molecular target. Because the structures of SM have been shaped and optimised during more than 500 million years of evolution, many of them exert interesting biological and pharmacological properties which make them useful for medicine or as biorational pesticides.

In this volume of Annual Plant Reviews, we have tried to provide an up-to-date survey of the function of plant SM, their modes of action and their use in pharmacology as molecular probes, in medicine as therapeutic agents, and in agriculture as biorational pesticides. A companion volume – *Biochemistry of Plant Secondary Metabolism* edited by M. Wink – published simultaneously provides overviews of the biosynthetic pathways (enzymes, genes) leading to the formation of alkaloids, glucosinolates, cyanogenic glucosides, non-protein amino acids, flavonoids and other phenolics and terpenoids. The mechanisms of transport and storage were also discussed as well as a general outline of the evolution of secondary metabolism.

The present volume is the second edition of a successful first edition, which was published in 1999 and which has received many positive responses from its readers. To achieve a comprehensive and up-to-date summary, we have invited scientists who are specialists in their particular areas to update their previous chapters. The present volume draws together results from a broad area of biochemistry, pharmacology and pharmacy and it cannot be exhaustive on such a large and diverse group of substances. Emphasis was placed on new results and concepts which have emerged over the last decades.

The volume starts with a bird's eye view of the function and utilization of SM (M. Wink), followed by a more detailed overview over the various modes of action of SM (M. Wink and O. Schimmer), including interactions with the major molecular targets, such as biomembranes, proteins and DNA. Some emphasis is placed on DNA modifying metabolites, on mechanisms involved in cytotoxicity and on SM interfering with elements of neuronal signal transduction (neuroreceptors, ion channels). The production of SM for defence is not restricted to plants, but can also be seen in other sessile organisms. SM are especially abundant in marine organisms. A. Putz and P. Proksch explore chemical defence in marine ecosystems. Because plants have to defend themselves against bacteria, fungi and viruses, it is not surprising that many SM exert antibacterial, antifungal and antiviral properties. The antimicrobial properties are reviewed with a special emphasis on medical application (J. Reichling). Because many pathogens have become resistant against antibiotics (e.g. MRSA), antibiotic substances from plants with different modes of actions become more important in the future. Mankind has used medicinal plants for thousands of years to treat health disorders and diseases. Although many of the traditional applications have been replaced by synthetic drugs these days, phytomedicine and phytotherapy is still in use and receiving much attention. J. Heilmann reviews new findings of plant-derived drug in the context of anticancer and chemopreventive properties, and drugs with anti-inflammatory, antidepressant, anti-ischaemic, antimalarial and immunostimulatory activities. The final chapter addresses the problem of the production of SM as some of them are difficult to obtain and thus very costly. An alternative to the plantation of medicinal plants in the field is the production of SM in plant cell and organ cultures or by recombinant microorganisms. The recent results and developments are reviewed by W. Alfermann.

The book is designed for use by advanced students, researchers and professionals in plant biochemistry, physiology, molecular biology, genetics, agriculture and pharmacy working in the academic and industrial sectors, including the pesticide and pharmaceutical industries.

The book brought together contributions from friends and colleagues in many parts of the world. As editor, I thank all those who have taken part in writing and preparation of this book. I thank Theodor C. H. Cole for help in preparation of the index. Special thanks go to the project editor Catriona Dixon from Wiley-Blackwell and her team for their interest, support and encouragement.

Michael Wink
Heidelberg