

Lecture Notes in Physics

Editorial Board

R. Beig, Wien, Austria
B.-G. Englert, Ismaning, Germany
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
H. v. Löhneysen, Karlsruhe, Germany
I. Ojima, Kyoto, Japan
D. Sornette, Nice, France, and Los Angeles, CA, USA
S. Theisen, Golm, Germany
W. Weise, Trento, Italy, and Garching, Germany
J. Wess, München, Germany
J. Zittartz, Köln, Germany

Springer

Berlin

Heidelberg

New York

Barcelona

Hong Kong

London

Milan

Paris

Tokyo

Physics and Astronomy

ONLINE LIBRARY

<http://www.springer.de/phys/>

Editorial Policy

The series *Lecture Notes in Physics* (LNP), founded in 1969, reports new developments in physics research and teaching -- quickly, informally but with a high quality. Manuscripts to be considered for publication are topical volumes consisting of a limited number of contributions, carefully edited and closely related to each other. Each contribution should contain at least partly original and previously unpublished material, be written in a clear, pedagogical style and aimed at a broader readership, especially graduate students and nonspecialist researchers wishing to familiarize themselves with the topic concerned. For this reason, traditional proceedings cannot be considered for this series though volumes to appear in this series are often based on material presented at conferences, workshops and schools (in exceptional cases the original papers and/or those not included in the printed book may be added on an accompanying CD ROM, together with the abstracts of posters and other material suitable for publication, e.g. large tables, colour pictures, program codes, etc.).

Acceptance

A project can only be accepted tentatively for publication, by both the editorial board and the publisher, following thorough examination of the material submitted. The book proposal sent to the publisher should consist at least of a preliminary table of contents outlining the structure of the book together with abstracts of all contributions to be included.

Final acceptance is issued by the series editor in charge, in consultation with the publisher, only after receiving the complete manuscript. Final acceptance, possibly requiring minor corrections, usually follows the tentative acceptance unless the final manuscript differs significantly from expectations (project outline). In particular, the series editors are entitled to reject individual contributions if they do not meet the high quality standards of this series. The final manuscript must be camera-ready, and should include both an informative introduction and a sufficiently detailed subject index.

Contractual Aspects

Publication in LNP is free of charge. There is no formal contract, no royalties are paid, and no bulk orders are required, although special discounts are offered in this case. The volume editors receive jointly 30 free copies for their personal use and are entitled, as are the contributing authors, to purchase Springer books at a reduced rate. The publisher secures the copyright for each volume. As a rule, no reprints of individual contributions can be supplied.

Manuscript Submission

The manuscript in its final and approved version must be submitted in camera-ready form. The corresponding electronic source files are also required for the production process, in particular the online version. Technical assistance in compiling the final manuscript can be provided by the publisher's production editor(s), especially with regard to the publisher's own Latex macro package which has been specially designed for this series.

Online Version/ LNP Homepage

LNP homepage (list of available titles, aims and scope, editorial contacts etc.):
<http://www.springer.de/phys/books/lnpp/>

LNP online (abstracts, full-texts, subscriptions etc.):
<http://link.springer.de/series/lnpp/>

P. Nielaba M. Mareschal G. Ciccotti (Eds.)

Bridging Time Scales: Molecular Simulations for the Next Decade

Springer

Editors

Peter Nielaba
Universität Konstanz
Lehrstuhl für Theoretische Physik
Fachbereich Physik
78457 Konstanz, Germany

Giovanni Ciccotti
Università La Sapienza
Dipartimento di Fisica
Piazzale Aldo Moro
00185 Roma, Italy

Michel Mareschal
CECAM
Ecole Normale Supérieure de Lyon
46 Allée d'Italie
69364 Lyon Cedex 07, France

Cover Picture: (see contribution by Jean-Pierre Hansen and Hartmut Löwen in this volume)

Cataloguing-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>

ISSN 0075-8450

ISBN 3-540-44317-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

<http://www.springer.de>

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editor

Camera-data conversion by Steingraeber Satztechnik GmbH Heidelberg

Cover design: *design & production*, Heidelberg

Printed on acid-free paper

SPIN: 10893324 54/3141/du - 5 4 3 2 1 0

Preface

“Bridging the Gap!”: We had been discussing the challenges to be met by the atomistic simulation community for a few hours when someone came up with this expression. As often happens in animated but exhausting discussions, there was at the same time both enthusiasm and relief. People were relieved by those three simple words which aptly described the main common trend in the approaches analyzed by the participants at the meeting. The meeting itself was held in a small town near Amsterdam, named Bussum, in order to get Daan Frenkel with us, and its aim was to lay the foundations of a large-scale European network in computational condensed matter statistical physics. This was not the end of the story which saw the building of a large collaboration in the form of the European Science Foundation (ESF) program known as SIMU. This program, in fact, required further discussion and effort, but it is probably correct to say that this simple formula helped initiate the network because it succinctly expressed the intellectual attitude shared by the participants in their effort to meet the actual challenges of the field.

First, which attitude? Molecular Dynamics and Monte Carlo simulation techniques are nowadays well accepted theoretical tools to predict, by heavy computing on realistic models, physical properties and dynamical processes in materials. Their scope has steadily increased in the years since the pioneering work of the fifties. Applications are common from the most simple liquid or solid materials to cover also, at least in principle, complex materials like colloids, polymers or poly-electrolytes, not to mention proteins or biological membranes. Most of those materials are studied experimentally, with atomic scale resolution techniques, and are used in many industrial processes. The theoretical understanding of their behavior is crucial in materials science also to analyze the experiments. However, those behaviors extend over length and time scales which are orders of magnitude longer and larger than the ones that can be achieved by brute force simulations in a fully atomistic description. Thus the challenge is to be able to reach scales which can be of the order of micrometers and seconds, starting from a fundamental level of description.

Second, which challenge? There is an agreement on the analysis that most of the progress made in recent years in the atomistic simulation of condensed matter originate in the development of new methods of simulation more than in the increase of available computing power, however impressive the latter has been. No foreseeable increase in computing power will ever be sufficient to give access to the large physical scales needed to describe material properties of realistic complex materials. There is a strong need for further development of methods able to address and, possibly, solve physical problems which are multi-scale in nature. Biased Monte Carlo and *ab initio* MD techniques are two beautiful examples of very successful progress.

There are, however, deeper connections in our community of “simulators” which make possible the transfer of techniques. For example, people working in polymer physics can easily understand the numerical issues which arise in Quantum Monte Carlo techniques and the progress in one field can be quickly transferred to the other. To give another example, the numerical approach behind the Car and Parrinello method can and has been used in classical statistical mechanics, via classical density functional theory, to get “exact” thermodynamic equilibrium averages over solvent configurations. In other words, the technical culture, often based on concepts of statistical physics, is shared, and thus allows an easy exchange of ideas and an efficient form of interdisciplinary collaboration.

This provides another reason (other than the more important one of maintaining the ambition and pride of the community) for the variety of subjects in this book which reproduces articles written after the conference *Bridging the time-scale gap* was held, at the University of Konstanz, in September 2001. The conference was organized within a series of activities supported by the 5-year ESF program SIMU (web site : <http://simu.ulb.ac.be/>). It focused on the subject of the time scale issue and got a large and enthusiastic participation: besides the 42 invited talks, there were more than one hundred posters and around 250 participants. There have been of course several large conferences dedicated to computational physics, but the peculiarity of this one was its focus on a well-defined theme, one however allowing interdisciplinary participation because of the variety of approaches and levels of description. It had similar spirit to some of the advanced schools organized previously, such as the summer school in Como in 1995 ¹ preceded by similar but more restricted initiatives such as the collective book on Monte Carlo methods in statistical physics in 1986 ² or the proceedings of the Varenna

¹ *Monte Carlo and Molecular Dynamics of Condensed Matter Systems*,
edited by K. Binder and G. Ciccotti, SIF, Bologna, (1996).

² *Monte Carlo Methods in Statistical Physics*,
edited by K. Binder, Topics in Current Physics 7, Springer-Verlag (1986).

school in 1985,³ which have been important references in the community for many years. At the end of the conference, the scientific committee (the editors plus Daan Frenkel) discussed the possibility of offering selected speakers the opportunity to contribute to a book which would be representative of conference topics and discussions and could remain a good testimony of ideas and techniques on which to build progress in the forthcoming years.

The result goes well beyond our best expectations both for the number and the quality of the contributions that provide a fair picture of the state-of-the-art in the field! We have reproduced the book chapters in the order chosen for the conference, and it is amazing to see that the order follows a kind of logic, starting with the largest scale, where proteins fold and unfold, and ending with Quantum Monte Carlo simulations where, as it was once said, one is bridging the gap in the other direction!

The book starts with contributions dealing with biological and polymer physics. All-atoms and lattice models are used to investigate protein folding dynamics and some of its mechanisms (Eugene I. Shakhnovich et al.) while coarse-grained models are developed in order to describe lipid mono-layers and bi-layers (Steve O. Nielsen and Michael L. Klein) on the relevant time scales. The contribution by Doros N. Theodorou presents a more methodological approach, with various fast (bridging!) algorithms allowing to equilibrate polymers. In his chapter, Alexander Grosberg introduces the new concept of commitor in order to deal with dynamics in conformation space : this concept was elaborated from an analysis of Monte Carlo simulations of protein folding and it is hoped that it could initiate new ideas in the simulation community. Kurt Kremer et al., in turn, describe micro-meso mapping schemes for polymeric materials and present results of a combined approach of mesoscale model simulations and quantum mechanical density functional theory calculations for polycarbonates near surfaces.

The next chapters deal with the statistical mechanics of complex materials. First, the coarse-graining through effective interactions allows Jean-Pierre Hansen and Hartmut Löwen to describe equilibrium properties of polymer and colloid fluid mixtures. The slow dynamic of glasses require not only coarse-graining but also some specific techniques like parallel tempering (Kurt Binder et al.). This problem is examined in a more systematic way by Nigel Wilding and David P. Landau who review several methods allowing faster convergence in lattice and continuous models. The hydrodynamic evolution is then investigated by Christopher P. Lowe and Sauro Succi who apply lattice-Boltzmann and hybrid techniques to various flow problems.

³ *Molecular-Dynamics Simulation of Statistical-Mechanical Systems*,
edited by G. Ciccotti and W.G. Hoover, SIF, Amsterdam, North-Holland (1986).

VIII Preface

Multi-scale methods are also described and applied to the problem of solid friction where a direct simulation inspection has permitted progress in the basic mechanisms involved (Martin H. Müser).

Three chapters of a more methodological nature follow: they are the contributions on the transition path sampling (Christoph Dellago and David Chandler), on the stochastic difference equation (Ron Elber et al.) and, finally, on the proper treatment of long range interactions. Transition path sampling was explained as *throwing ropes over a mountain path in the dark* and it deals with the computation of rate constants when the reaction mechanisms are not precisely known. Stochastic dynamics is being introduced in order to generate long-time trajectories. Problems with long-range Coulombic and dipolar systems are then treated by Dominique Levesque.

The last part of the book deals with simulation techniques involving a quantum aspect. It starts with a description of *ab initio* MD recent advances by Glenn J. Martyna and Mark E. Tuckerman. The use of this technique is heavily time-consuming to create a serious time-scale problem. Ways to overcome the time-scale barrier are described in the contribution by Ursula Röthlisberger, Michiel Sprik, and Jürg Hutter: bias potentials and electronic bias potentials are being introduced, together with the explanations on how to apply the method, and to compute rate constants. Often it is necessary to treat part of the system classically and, in the presentation by Raymond Kapral and Giovanni Ciccotti, the embedding of a quantum system interacting with classical degrees of freedom is studied in a systematic way. The book ends with a contribution by David Ceperley, Mark Dewing, and Carlo Pierleoni where a classical Monte Carlo simulation for the ions is coupled to a Quantum Monte Carlo simulation for the electrons in order to describe liquid and metallic behavior of quantum hydrogen. Time scales in this approach are an order of magnitude smaller than in the first chapter, however the numerical problems to overcome are very familiar, as one knows from the similarity with polymer physics.

It is our belief that multi-scale and hierarchical modeling will be used more and more in the future. Our ambition in assembling these contributions is not only to show the great vitality of the field with the many different approaches to the time-scale problem, but also to help readers to understand what are the real issues and difficulties in applying those techniques to the many problems arising in the microscopic description of the thermodynamical properties of matter. Let us hope that the ideas and methods presented in this book will have a lasting impact.

The conference could not have taken place without the support provided by the European Science Foundation. This support came through the program *Challenges in Molecular Simulations* (SIMU) which has been approved for 5 years (1999–2003). It is a pleasure to extend our thanks to Professor J. Rojo, the chairman of the ESF committee, PESC, who accepted our invitation to come and talk at the conference.

The members of the steering committee of the SIMU program have been decisive to the success of the conference, both for their enthusiastic support and financial generosity. Even more important to the success of the meeting has been their participation in chairing the sessions and enlivening the discussions which took place during them. Many thanks to all.

Financial and logistic support is also acknowledged to CECAM (Centre European de Calcul Atomique et Moleculaire, Lyon), the University of Konstanz and the Landesbank of Baden-Württemberg.

The staff in Konstanz has been extraordinarily efficient: Sabine Becker-Weimann, Markus Dreher, Dominik Fischer, Yolanda Fischer, Kerstin Franzrahe, Martin Frick, Peter Henseler, Jochen Hoffmann, Guido Günther, Hans Knoth, Marc Lohrer, Ulrich Mack, Günther Schafranek, Ralf Stadelhofer, Wolfram Strepp. In particular we appreciated their participation and response to all the emotional and organizational strains of September 11th. This is a lasting memory of the qualities and generosity of Peter's group. Particular thanks go to Yolanda Fischer: all financial, hosting and booking problems were handled by her in a masterful way! Additional help by the usually overburdened Emmanuelle Crespeau will remain unforgettable.

Konstanz, Lyon and Rome,
August 2002

*Peter Nielaba
Michel Mareschal
Giovanni Ciccotti*

Fig. 1. Photo taken at the conference *Bridging the time-scale gap* in Konstanz, 10–13.9.2001

Table of Contents

Part I Protein Folding

1 Sidechain Dynamics and Protein Folding	
Edo Kussell, Jun Shimada, Eugene I. Shakhnovich	3
1.1 Introduction	3
1.2 Results	5
1.3 Discussion	18
1.4 Methods	21
References	23

Part II Applications of Statistical Mechanics to Biological Systems

2 A Coarse Grain Model for Lipid Monolayer and Bilayer Studies	
Steve O. Nielsen, Michael L. Klein	27
2.1 Introduction	27
2.2 Challenges	28
2.3 Models	30
2.3.1 Previous Work	30
2.3.2 Towards the Current CG Model	32
2.3.3 A First Attempt	34
2.4 Applications	41
2.4.1 Fluctuation Modes	41
2.4.2 Bulk Alkane and Water Surface Tension	43
2.4.3 Self-assembly	43
2.4.4 Transmembrane Peptide Induced Domain Formation	46
2.4.5 Transmembrane Peptide Induced L_α to H_{II} Phase Transition	52
2.4.6 Buckling Instabilities in Langmuir Monolayers	54
2.5 Future Perspectives	58
References	60

Part III Polymer Structure and Dynamics

3 Variable-Connectivity Monte Carlo Algorithms for the Atomistic Simulation of Long-Chain Polymer Systems	
Doros N. Theodorou	67
3.1 Introduction	67
3.2 The Bridging Construction	71
3.3 Monte Carlo Algorithms Based on the Bridging Construction	77
3.3.1 Concerted Rotation	77
3.3.2 Directed Internal Bridging	80
3.3.3 End-Bridging in the $Nn\mu^*PT$ Ensemble	81
3.3.4 Directed End-Bridging	89
3.3.5 Sampling of Oriented Chains: $NnbT\mu^*\alpha$ MC Simulations ..	90
3.3.6 Scission and Fusion Algorithms for Phase Equilibria	92
3.3.7 Double Bridging and Intramolecular Double Rebridging ..	96
3.3.8 Connectivity-Altering Monte Carlo and Parallel Tempering	100
3.4 Applications	103
3.4.1 Structure and Volumetric Properties of Long-Chain Polyethylene Melts	103
3.4.2 Simulations of Polypropylene Melts of Various Tacticities ..	107
3.4.3 Simulation of Polydienes	110
3.4.4 Prediction of Melt Elasticity	113
3.4.5 Sorption Equilibria of Alkanes in Polyethylene	119
3.4.6 Polymers at Interfaces	121
3.5 Conclusions and Outlook	124
References	125
4 Bridging the Time Scale Gap: How Does Foldable Polymer Navigate Its Conformation Space?	
Alexander Grosberg	129
4.1 Introducing the Characters	129
4.2 Setting Up the Stage: Conformation Space and Reaction Coordinate	130
4.2.1 Conformation Space: Lattice Polymer	130
4.2.2 Conformation Space: Off-lattice Polymer	131
4.2.3 Reaction Coordinate Problem	132
4.3 Unfolding the Drama: Commitor, p_{fold} , and the Reaction Coordinate	134
4.3.1 Commitor	134
4.3.2 Direct Current Analogy	135
4.3.3 Diffusion Equation and Continuous (Off-lattice) Models ..	136
4.3.4 Stationary and Transient Regimes	137

4.3.5	Direct Current Formulation of the First Return Problem: Casino Problem and Its Easy Solution	138
4.3.6	Direct Current Formulation of the Commitor	139
4.3.7	Direct Current Formulation of the Landscape	139
4.4	Culmination: So What?	141
	References	141

5 Multiscale Computer Simulations for Polymeric Materials in Bulk and Near Surfaces

	Cameron Abrams, Luigi Delle Site, Kurt Kremer	143
5.1	Introduction	143
5.2	Length and Time Scales for Polymer Simulations	144
5.3	Dual-Scale Modelling Ansatz	148
5.3.1	Mesoscopic Models in Bulk and Near Surfaces	148
5.3.2	Systematic Molecular Coarse-Graining	153
5.3.2.1	Mapping Schemes	153
5.3.2.2	Coarse Grained Liquid Structure	154
5.4	Specific Surface Effects: BPA-PC Near a Ni Surface	156
5.5	Other Approaches: Automatic Coarse-Graining	159
5.6	Conclusions, Outlook	162
	References	163

Part IV Complex and Mesoscopic Fluids

6 Effective Interactions for Large-Scale Simulations of Complex Fluids

	Jean-Pierre Hansen, Hartmut Löwen	167
6.1	Introduction	167
6.2	Efficient Coarse-Graining Through Effective Interactions	168
6.3	Electric Double-Layers	172
6.4	Simulating the Polarization of Dielectric Media	174
6.5	Coarse-Graining Linear Polymer Solutions	176
6.6	Star Polymers and Dendrimers	178
6.7	Colloids and Polymers: Depletion Interactions	183
6.8	Binary Colloidal “Alloys”	185
6.9	From Colloidal to Nanoscales	187
6.10	Conclusions	190
	References	192

Part V Slow Dynamics and Reactivity

7 Simulation of Models for the Glass Transition: Is There Progress?

Kurt Binder, Jörg Baschnagel, Walter Kob, Wolfgang Paul	199
7.1 Introduction	199
7.2 Towards the Simulation of Real Glassy Materials: The Case of SiO ₂	204
7.3 Parallel Tempering	209
7.4 An Abstract Model for Static and Dynamic Glass Transitions: The 10-State Mean Field Potts Glass	212
7.5 The Bead-Spring Model: A Coarse-Grained Model for the Study of the Glass Transition of Polymer Melts	217
7.6 The Bond Fluctuation Model Approach to Glassforming Polymer Melts	219
7.7 Can One Map Coarse-Grained Models onto Atomistically Realistic Ones?	222
7.8 Concluding Remarks	224
References	226

Part VI Lattice Models

8 Monte Carlo Methods for Bridging the Timescale Gap

Nigel Wilding, David P. Landau	231
8.1 General Introduction	231
8.2 Problems and Challenges	232
8.2.1 Introduction to Metropolis Importance Sampling	232
8.2.2 Origin of Time-Scale Problems	234
8.2.3 Traditional Computational Solutions	235
8.3 Some “Recent” Developments	236
8.3.1 Second Order Transitions	236
8.3.1.1 Cluster Flipping	236
8.3.1.2 The N-fold Way and Extensions	237
8.3.1.3 “Wang–Landau” Sampling	239
8.3.2 First Order Transitions	240
8.3.2.1 Free Energy Comparison: The Statistical Mechanics Perspective	241
8.3.2.2 Multicanonical Monte Carlo	244
8.3.2.3 Tracking Phase Boundaries: Histogram Extrapolation	245
8.3.2.4 Phase Switch Monte Carlo	247

8.3.2.5 First Order Transitions and Wang–Landau Sampling	253
8.3.3 Systems with Complex Order	256
8.3.4 “Dynamic” Behavior: Spin Dynamics with Decompositions of Exponential Operators	258
8.4 Summary and Outlook	263
References	265
9 Go-with-the-Flow Lattice Boltzmann Methods for Tracer Dynamics	
Christopher P. Lowe, Sauro Succi	267
9.1 Introduction	267
9.2 LBE Schemes with Tracer Dynamics	269
9.2.1 Extra-dimensional Methods	269
9.2.2 Hybrid Grid–Grid	269
9.2.3 Hybrid Grid–Particle	270
9.2.4 Go-with-the-Flow Kinetic Methods	270
9.3 Hydrodynamic Dispersion	270
9.3.1 The Moment Propagation Method	272
9.3.2 Galilean Invariance	276
9.3.3 Varying the Peclet Number	276
9.3.4 The VACF at Infinite Time	277
9.3.5 Generalization	278
9.4 Applications of the Model	279
9.4.1 Dispersion in a Tube	279
9.4.2 Dispersion in Cubic Periodic Arrays	282
9.5 Conclusions	283
References	284

Part VII Multiscale Modelling in Materials Science

10 Atomistic Simulations of Solid Friction	
Martin H. Müser	289
10.1 Introduction	289
10.1.1 The Relevance of Details: A Simple Case Study	291
10.2 Solid Friction Versus Stokes Friction	294
10.3 Dry Friction	297
10.3.1 Rigid Walls and Geometric Interlocking	297
10.3.2 Elastic Deformations: Role of Disorder and Dimensions	298
10.3.3 Extreme Conditions and Non-elastic Deformations	299
10.4 Lubrication	301
10.4.1 Boundary Lubrication	303
10.4.2 Hydrodynamic Lubrication and Its Breakdown	305

XVIII Table of Contents

10.5 Setting Up a Tribological Simulation	305
10.5.1 The Essential Ingredients	305
10.5.2 Physico-chemical Properties	307
10.5.3 Initial Geometry	308
10.5.4 Driving Device	310
10.5.5 Thermostating	311
10.5.6 Methods to Treat the Wall's Elasticity	311
10.5.7 Calculation of the Friction Force	313
10.5.8 Interpretation of Time Scales and Velocities	313
10.6 Conclusions	314
References	316

Part VIII Methodological Developments in MD and MC

11 Bridging the Time Scale Gap with Transition Path Sampling

Christoph Dellago, David Chandler	321
11.1 Why Transition Path Sampling Is Needed	321
11.2 How Transition Path Sampling Works	323
11.2.1 Probabilities of Trajectories	323
11.2.2 Defining the Transition Path Ensemble	324
11.2.3 Sampling the Transition Path Ensemble	325
11.3 What Transition Path Sampling Can Do	326
11.3.1 The Rare Event Problem	327
11.3.2 Solving the Rare Event Problem with Transition Path Sampling	327
11.3.3 Interpreting the Ensemble of Harvested Paths	329
11.3.4 Rate Constants	330
11.4 What Transition Path Sampling Cannot Do (Yet)	330
11.4.1 One and Two Point Boundary Problems	330
11.4.2 Chains of States with Long Time Steps	331
11.4.3 Pattern Recognition	332
References	332

12 The Stochastic Difference Equation as a Tool to Compute Long Time Dynamics

Ron Elber, Avijit Ghosh, Alfredo Cárdenas	335
12.1 Introduction	335
12.2 Molecular Dynamics	335
12.2.1 Initial Value Formulation	336
12.2.2 A Boundary Value Formulation in Time	336
12.2.3 A Boundary Value Formulation in Length	340
12.3 The Stochastic Difference Equation	341

12.3.1 Stochastic Difference in Time: Definition	341
12.3.2 A Stochastic Model for a Trajectory	345
12.3.3 “Stabilizing” Long Time Trajectories, or Filtering High Frequency Modes	347
12.3.4 Weights of Trajectories and Sampling Procedures	350
12.3.5 Mean Field Approach, Fast Equilibration and Molecular Labeling	353
12.3.6 Stochastic Difference in Length	355
12.3.7 “Fractal” Refinement of Trajectories Parameterized by Length	358
12.4 Numerical Experiments	360
12.5 Concluding Remarks	363
13 Numerical Simulations of Molecular Systems with Long Range Interactions	
Dominique Levesque	367
13.1 Introduction	367
13.2 3-D Systems	367
13.3 Confined Systems	373
13.4 Conclusion	377
References	377

Part IX Perspectives in *ab initio* MD

14 New Developments in Plane-Wave Based <i>ab initio</i> Calculations	
Glenn J. Martyna, Mark E. Tuckerman	381
14.1 Introduction	381
14.2 Methods	382
14.2.1 Clusters, Surfaces and Solids/Liquids	382
14.2.1.1 Solids/Liquids	383
14.2.1.2 Clusters	384
14.2.1.3 Surfaces	386
14.2.1.4 Wires	388
14.2.1.5 Summary	389
14.2.1.6 Application to Ewald Summation	390
14.2.1.7 Application to Plane-Wave Based Density Functional Theory	391
14.2.2 Dual Length Scale Approach	392
14.3 Results	399
14.3.1 Clusters	400
14.3.1.1 Hartree and Local Pseudopotential Energies for a Model Density	400

14.3.1.2 Water Molecule and Hydronium Ion	400
14.3.2 Surface Ewald Summation	401
14.3.2.1 Model BCC Surface	401
14.3.2.2 Ice Surface with a Defect	403
14.3.3 Mixed <i>ab initio</i> /Empirical Force Fields	405
14.3.3.1 Neat Water	405
14.3.3.2 HCA II in Water	407
14.4 Conclusion	409
References	410
15 Time and Length Scales in <i>ab initio</i> Molecular Dynamics	
Ursula Röthlisberger, Michiel Sprik, Jürg Hutter	413
15.1 Introduction	413
15.2 Overcoming the Time Scale Barrier: Enhanced Sampling Techniques for <i>ab initio</i> Molecular Dynamics Simulations	414
15.2.1 Time Scale Limitations in <i>ab initio</i> Molecular Dynamics Simulations	414
15.2.2 The Use of Classical Force Fields as Bias Potentials for an Enhanced Sampling of Conformational Transitions	415
15.2.3 Finite Electronic Temperatures as Electronic Bias Potentials	417
15.3 Computation of Acid Dissociation Constants	419
15.3.1 Time and Length Scales in Aqueous Chemistry	419
15.3.2 Determination of Free Energy Profiles	420
15.3.3 Statistical Thermodynamics of Gas-Phase Equilibria	421
15.3.4 Reversible Work and Equilibrium Constants	422
15.3.5 Controlled Dissociation in a Small Box	424
15.3.6 Computation of the Water Dissociation Constant	425
15.3.7 Application to Weak Acids and Evaluation of Method	427
15.4 Linear Scaling Electronic Structure Methods for <i>ab initio</i> Molecular Dynamics	428
15.4.1 Kohn–Sham Matrix Calculation	429
15.4.2 Wavefunction Optimization; Solving the Kohn–Sham Equations	434
References	440

Part X Quantum Simulations

16 A Statistical Mechanical Theory of Quantum Dynamics in Classical Environments	
Raymond Kapral, Giovanni Ciccotti	445
16.1 Introduction	445
16.2 Quantum Dynamics and Statistical Mechanics	446

16.2.1 Mixed Representation of Quantum Statistical Mechanics	448
16.3 Quantum-Classical World	451
16.4 Nature of Quantum-Classical Dynamics	453
16.5 Time Evolution of Dynamical Variables	458
16.5.1 Equations for Canonical Variables	461
16.6 Quantum-Classical Equilibrium Density	462
16.7 Quantum-Classical Time Correlation Functions	463
16.8 Simulation Schemes	467
16.8.1 Spin-Boson Model	468
16.9 Conclusion	470
References	471

17 The Coupled Electronic–Ionic Monte Carlo Simulation Method

David Ceperley, Mark Dewing, Carlo Pierleoni	473
17.1 Introduction	473
17.2 The Coupled Electronic-Ionic Monte Carlo Method	476
17.3 The Penalty Method	477
17.4 Energy Differences	478
17.4.1 Direct Difference	479
17.4.2 Reweighting	479
17.4.3 Importance Sampling	480
17.5 Choice of Trial Wave Function	480
17.6 Twist Average Boundary Conditions	482
17.7 Fluid Molecular Hydrogen	483
17.8 The Atomic–Metallic Phase	486
17.8.1 Trial Wave Function and Optimization	486
17.8.2 Comparison with PIMC	491
17.8.3 Hydrogen Equation of State and Solid–Liquid Phase Transition of the Protons	494
17.9 Conclusions and Outlook	497
References	499

List of Contributors

Cameron Abrams
Max-Planck-Institute
for Polymer Research
Postfach 3148
Ackermannweg 10
55021 Mainz, Germany

Jörg Baschnagel
Institut Charles Sadron
Université Louis Pasteur
6, rue Bossingault
67083 Strasbourg, France

Kurt Binder
Institut für Physik
Johannes-Gutenberg-Universität
55099 Mainz, Germany
kurt.binder@uni-mainz.de

Alfredo Cardenas
Department of Computer Science
Cornell University
Ithaca, NY 14850, USA

David Ceperley
Department of Physics
University of Illinois
at Urbana-Champaign
1110 West Green Street
Urbana, Illinois 61801, USA
ceperley@pop.ncsa.uiuc.edu

David Chandler
Department of Chemistry
University of California
Berkeley, California 94720, USA
chandler@gold.chem.berkeley.edu

Giovanni Ciccotti
INFM and Dipartimento di Fisica
Università “La Sapienza”
Piazzale Aldo Moro, 2
00185 Roma, Italy
giovanni.ciccotti@roma1.infn.it

Cristoph Dellago
Department of Chemistry
University of Rochester
Rochester, New York 14627, USA
dellago@chem.rochester.edu

Luigi Delle Site
Max-Planck-Institute
for Polymer Research
Postfach 3148
Ackermannweg 10
55021 Mainz, Germany

Mark Dwing
INTEL
1906 Fox Dr.
Champaign, IL, 61820, USA

Ron Elber
Department of Computer Science
Cornell University
Ithaca, NY 14850, USA
ron@cs.cornell.edu

Avijit Ghosh

Department of Computer Science
Cornell University
Ithaca, NY 14850, USA

Alexander Grosberg

Department of Physics
University of Minnesota
116 Church Street SE
Minneapolis, MN 55455, USA
and
Institute of Biochemical Physics
Russian Academy of Sciences
Moscow 117119, Russia
grosberg@physics.umn.edu

Jean-Pierre Hansen

Department of Chemistry
Lensfield Road
Cambridge CB2 1EW, UK
jph32@cus.cam.ac.uk

Jürg Hutter

Physical Chemistry Institute
University of Zürich
8057 Zürich, Switzerland
hutter@pci.unizh.ch

Raymond Kapral

Chemical Physics Theory Group
Department of Chemistry
University of Toronto
Toronto, ON M5S 3H6, Canada
rkapral@gatto.chem.utoronto.ca

Michael L. Klein

Center for Molecular Modeling
and
Department of Chemistry
University of Pennsylvania
Philadelphia PA 19104-6323, USA
klein@cmm.upenn.edu

Walter Kob

Laboratoire des Verres
Université Montpellier II
34095 Montpellier, France
kob@ldv.univ-montp2.fr

Kurt Kremer

Max-Planck-Institute
for Polymer Research
Postfach 3148
Ackermannweg 10
55021 Mainz, Germany
k.kremer@mpip-mainz.mpg.de

Edo Kussell

Department of Biophysics
Harvard University
240 Longwood Ave
Boston, MA 02115, USA

David P. Landau

Center for Simulational Physics
The University of Georgia
Athens, Georgia 30602, USA
dlandau@hal.physast.uga.edu

Dominique Levesque

Laboratoire de Physique Théorique
Bâtiment 210, Université Paris-Sud
91405 Orsay Cedex, France
dominique.levesque@th.u-psud.fr

Hartmut Löwen

Institut für Theoretische Physik II
Heinrich-Heine-Universität
Universitätsstraße 1,
40225 Düsseldorf, Germany
hlowen@thphy.uni-duesseldorf.de

Christopher P. Lowe

Department of Chemical Engineering
University of Amsterdam
Nieuwe Achtergracht 166
1018 WV Amsterdam
The Netherlands
c.p.lowe@tn.tudelft.nl

Glenn J. Martyna
IBM TJ Watson Lab
PO Box 218
Yorktown Heights, NY 10598, USA

Martin H. Müser
Institut für Physik
Johannes Gutenberg-Universität
55099 Mainz, Germany
martin.mueser@uni-mainz.de

Steve O. Nielsen
Center for Molecular Modeling
and
Department of Chemistry
University of Pennsylvania
Philadelphia, PA 19104-6323, USA

Wolfgang Paul
Institut für Physik
Johannes-Gutenberg-Universität
55099 Mainz, Germany
wolfgang.paul@uni-mainz.de

Carlo Pierleoni
INFM
and
Department of Physics
University of L'Aquila
Via Vetoio
L'Aquila, Italy
carlo.pierleoni@aquila.infn.it

Ursula Röthlisberger
Institute of Molecular and Biological
Chemistry
Swiss Federal Institute of Technology
EPFL
1015 Lausanne, Switzerland
ursula.roethlisberger@inorg.chem.ethz.ch

Eugene I. Shakhnovich
Department of Chemistry and
Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138, USA
eugene@belok.harvard.edu

Jun Shimada
Department of Chemistry and
Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138, USA

Michiel Sprik
Chemistry Department
University of Cambridge
Cambridge CB2 1EW, UK
sprik@theor.ch.cam.ac.uk

Sauro Succi
Istituto di Applicazioni Calcolo
viale Policlinico 137
00161 - Roma, Italy
succi@iac.rm.cnr.it

Doros N. Theodorou
Department of Materials Science
and Engineering
School of Chemical Engineering
National Technical University
Zografou Campus
157 80 Athens, Greece
and
Molecular Modelling of Materials
Laboratory
Institute of Physical Chemistry
National Research Centre for
Physical Sciences "Demokritos"
153 10 Ag. Paraskevi Attikis, Greece
doros@sequoia.chemeng.upatras.gr

XXVI List of Contributors

Mark E. Tuckerman
Chemistry Department
and
Courant Institute
New York University
New York, NY 10003, USA
mark.tuckerman@nyu.edu

Nigel Wilding
Department of Physics
University of Bath
Bath BA2 7AY, UK
N.B.Wilding@bath.ac.uk