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Preface

“Bridging the Gap!”: We had been discussing the challenges to be met by the
atomistic simulation community for a few hours when someone came up with
this expression. As often happens in animated but exhausting discussions,
there was at the same time both enthusiasm and relief. People were relieved
by those three simple words which aptly described the main common trend
in the approaches analyzed by the participants at the meeting. The meeting
itself was held in a small town near Amsterdam, named Bussum, in order
to get Daan Frenkel with us, and its aim was to lay the foundations of a
large-scale European network in computational condensed matter statistical
physics. This was not the end of the story which saw the building of a large
collaboration in the form of the European Science Foundation (ESF) program
known as SIMU. This program, in fact, required further discussion and effort,
but it is probably correct to say that this simple formula helped initiate the
network because it succinctly expressed the intellectual attitude shared by
the participants in their effort to meet the actual challenges of the field.

First, which attitude? Molecular Dynamics and Monte Carlo simulation
techniques are nowadays well accepted theoretical tools to predict, by heavy
computing on realistic models, physical properties and dynamical processes
in materials. Their scope has steadily increased in the years since the pioneer-
ing work of the fifties. Applications are common from the most simple liquid
or solid materials to cover also, at least in principle, complex materials like
colloids, polymers or poly-electrolytes, not to mention proteins or biological
membranes. Most of those materials are studied experimentally, with atomic
scale resolution techniques, and are used in many industrial processes. The
theoretical understanding of their behavior is crucial in materials science also
to analyze the experiments. However, those behaviors extend over length and
time scales which are orders of magnitude longer and larger than the ones
that can be achieved by brute force simulations in a fully atomistic descrip-
tion. Thus the challenge is to be able to reach scales which can be of the order
of micrometers and seconds, starting from a fundamental level of description.
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Second, which challenge? There is an agreement on the analysis that most
of the progress made in recent years in the atomistic simulation of condensed
matter originate in the development of new methods of simulation more than
in the increase of available computing power, however impressive the latter
has been. No foreseeable increase in computing power will ever be sufficient to
give access to the large physical scales needed to describe material properties
of realistic complex materials. There is a strong need for further development
of methods able to address and, possibly, solve physical problems which are
multi-scale in nature. Biased Monte Carlo and ab initio MD techniques are
two beautiful examples of very successful progress.

There are, however, deeper connections in our community of “simulators”
which make possible the transfer of techniques. For example, people working
in polymer physics can easily understand the numerical issues which arise in
Quantum Monte Carlo techniques and the progress in one field can be quickly
transferred to the other. To give another example, the numerical approach
behind the Car and Parrinello method can and has been used in classical
statistical mechanics, via classical density functional theory, to get “exact”
thermodynamic equilibrium averages over solvent configurations. In other
words, the technical culture, often based on concepts of statistical physics,
is shared, and thus allows an easy exchange of ideas and an efficient form of
interdisciplinary collaboration.

This provides another reason (other than the more important one of main-
taining the ambition and pride of the community) for the variety of subjects
in this book which reproduces articles written after the conference Bridging
the time-scale gap was held, at the University of Konstanz, in September
2001. The conference was organized within a series of activities supported
by the 5-year ESF program SIMU (web site : http://simu.ulb.ac.be/). It fo-
cused on the subject of the time scale issue and got a large and enthusiastic
participation: besides the 42 invited talks, there were more than one hun-
dred posters and around 250 participants. There have been of course several
large conferences dedicated to computational physics, but the peculiarity of
this one was its focus on a well-defined theme, one however allowing inter-
disciplinary participation because of the variety of approaches and levels of
description. It had similar spirit to some of the advanced schools organized
previously, such as the summer school in Como in 1995 ! preceded by similar
but more restricted initiatives such as the collective book on Monte Carlo
methods in statistical physics in 1986 2 or the proceedings of the Varenna

L Monte Carlo and Molecular Dynamics of Condensed Matter Systems,
edited by K. Binder and G. Ciccotti, SIF, Bologna, (1996).

2 Monte Carlo Methods in Statistical Physics,
edited by K. Binder, Topics in Current Physics 7, Springer-Verlag (1986).
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school in 1985,3 which have been important references in the community for
many years. At the end of the conference, the scientific committee (the editors
plus Daan Frenkel) discussed the possibility of offering selected speakers the
opportunity to contribute to a book which would be representative of confer-
ence topics and discussions and could remain a good testimony of ideas and
techniques on which to build progress in the forthcoming years.

The result goes well beyond our best expectations both for the number
and the quality of the contributions that provide a fair picture of the state-
of-the-art in the field! We have reproduced the book chapters in the order
chosen for the conference, and it is amazing to see that the order follows a
kind of logic, starting with the largest scale, where proteins fold and unfold,
and ending with Quantum Monte Carlo simulations where, as it was once
said, one is bridging the gap in the other direction!

The book starts with contributions dealing with biological and polymer
physics. All-atoms and lattice models are used to investigate protein folding
dynamics and some of its mechanisms (Eugene I. Shakhnovich et al.) while
coarse-grained models are developed in order to describe lipid mono-layers
and bi-layers (Steve O. Nielsen and Michael L. Klein) on the relevant time
scales. The contribution by Doros N. Theodorou presents a more methodolog-
ical approach, with various fast (bridging!) algorithms allowing to equilibrate
polymers. In his chapter, Alexander Grosberg introduces the new concept of
commitor in order to deal with dynamics in conformation space : this concept
was elaborated from an analysis of Monte Carlo simulations of protein folding
and it is hoped that it could initiate new ideas in the simulation community.
Kurt Kremer et al., in turn, describe micro-meso mapping schemes for poly-
meric materials and present results of a combined approach of mesoscale
model simulations and quantum mechanical density functional theory calcu-
lations for polycarbonates near surfaces.

The next chapters deal with the statistical mechanics of complex mate-
rials. First, the coarse-graining through effective interactions allows Jean-
Pierre Hansen and Hartmut Lowen to describe equilibrium properties of
polymer and colloid fluid mixtures. The slow dynamic of glasses require not
only coarse-graining but also some specific techniques like parallel tempering
(Kurt Binder et al.). This problem is examined in a more systematic way
by Nigel Wilding and David P. Landau who review several methods allow-
ing faster convergence in lattice and continuous models. The hydrodynamic
evolution is then investigated by Christopher P. Lowe and Sauro Succi who
apply lattice-Boltzmann and hybrid techniques to various flow problems.

3 Molecular-Dynamics Simulation of Statistical-Mechanical Systems,
edited by G. Ciccotti and W.G. Hoover, SIF, Amsterdam, North-Holland (1986).
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Multi-scale methods are also described and applied to the problem of solid
friction where a direct simulation inspection has permitted progress in the
basic mechanisms involved (Martin H. Miiser).

Three chapters of a more methodological nature follow: they are the con-
tributions on the transition path sampling (Christoph Dellago and David
Chandler), on the stochastic difference equation (Ron Elber et al.) and, fi-
nally, on the proper treatment of long range interactions. Transition path
sampling was explained as throwing ropes over a mountain path in the dark
and it deals with the computation of rate constants when the reaction mech-
anisms are not precisely known. Stochastic dynamics is being introduced in
order to generate long-time trajectories. Problems with long-range Coulom-
bic and dipolar systems are then treated by Dominique Levesque.

The last part of the book deals with simulation techniques involving a
quantum aspect. It starts with a description of ab initio MD recent advances
by Glenn J. Martyna and Mark E. Tuckerman. The use of this technique
is heavily time-consuming to create a serious time-scale problem. Ways to
overcome the time-scale barrier are described in the contribution by Ursula
Rothlisberger, Michiel Sprik, and Jiirg Hutter: bias potentials and electronic
bias potentials are being introduced, together with the explanations on how
to apply the method, and to compute rate constants. Often it is necessary
to treat part of the system classically and, in the presentation by Raymond
Kapral and Giovanni Ciccotti, the embedding of a quantum system inter-
acting with classical degrees of freedom is studied in a systematic way. The
book ends with a contribution by David Ceperley, Mark Dewing, and Carlo
Pierleoni where a classical Monte Carlo simulation for the ions is coupled
to a Quantum Monte Carlo simulation for the electrons in order to describe
liquid and metallic behavior of quantum hydrogen. Time scales in this ap-
proach are an order of magnitude smaller than in the first chapter, however
the numerical problems to overcome are very familiar, as one knows from the
similarity with polymer physics.

It is our belief that multi-scale and hierarchical modeling will be used
more and more in the future. Our ambition in assembling these contributions
is not only to show the great vitality of the field with the many different
approaches to the time-scale problem, but also to help readers to understand
what are the real issues and difficulties in applying those techniques to the
many problems arising in the microscopic description of the thermodynami-
cal properties of matter. Let us hope that the ideas and methods presented
in this book will have a lasting impact.
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The conference could not have taken place without the support provided
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Fig. 1. Photo taken at the conference Bridging the time-scale gap in Konstanz,
10-13.9.2001
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