

CONTENTS

Preface	xxv
1. Foreword-Overview: Wood-Plastic Composites	1
WPC: Pricing Restrictions, 11	
WPC: Brands and Manufacturers, 15	
Flexural Strength, 15	
Flexural Modulus and Deflection, 17	
Deck Boards, 17	
Stair Treads, 18	
Thermal Expansion-Contraction, 20	
Shrinkage, 22	
Slip Resistance, 24	
Water Absorption, Swell, and Buckling, 26	
Microbial Degradation, 29	
Termite Resistance, 33	
Flammability, 35	
Oxidation and Crumbling, 36	
Photooxidation and Fading, 40	
Wood-Plastic Composites—Products, Trends, Market Size and Dynamics, and Unsolved (or Partially Solved) Problems, 42	
WPC Products, 42	
The Public View: Perception, 43	

WPC Market Size and Dynamics, 44	
Competition on the WPC Market, 45	
Unsolved (or Only Partially Solved) R & D Problems, 48	
References, 49	
2. Composition of Wood–Plastic Composite Deck Boards: Thermoplastics	50
Introduction, 50	
Polyethylene, 51	
Low-Density Polyethylene (LDPE), 54	
Medium-Density Polyethylene (MDPE), 55	
High-Density Polyethylene (HDPE), 55	
Polypropylene, 56	
Polyvinyl Chloride, 58	
Acrylonitrile–Butadiene–Styrene Copolymer (ABS), 61	
Nylon 6 and Other Polyamides, 62	
Conclusion, 64	
Addendum: ASTM Tests Covering Definitions of Technical Terms and Their Contractions Used in Plastic Industry and Specifications of Plastics, 67	
ASTM D 883 “Standard Terminology Relating to Plastics”, 67	
ASTM D 1600 “Standard Terminology for Abbreviated Terms Relating to Plastics”, 68	
ASTM D 1784 “Standard Specifications for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds”, 68	
ASTM D 1972 “Standard Practice for Generic Marking of Plastic Products”, 69	
ASTM D 4066 “Standard Classification System for Nylon Injection and Extrusion Materials (PA)”, 69	
ASTM D 4101 “Standard Specification for Polypropylene Injection and Extrusion Materials”, 70	
ASTM D 4216 “Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Related PVC and Chlorinated Poly(Vinyl Chloride) (CPVC) Building Products Compounds”, 70	
ASTM D 4396 “Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds for Plastic Pipe and Fittings Used in Nonpressure Applications”, 70	
ASTM D 4673 “Standard Classification System for Acrylonitrile–Butadiene–Styrene (ABS) Plastics and Alloys Molding and Extrusion Materials”, 70	
ASTM D 4976 “Standard Specification for Polyethylene Plastics Molding and Extrusion Materials”, 71	

ASTM D 5203 "Standard Specification for Polyethylene Plastics Molding and Extrusion Materials from Recycled Postconsumer (HDPE) Sources", 72	
ASTM D 6263 "Standard Specification for Extruded Rods and Bars Made from Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC)", 72	
ASTM D 6779 "Standard Classification System for Polyamide Molding and Extrusion Materials (PA)", 73	
References, 73	
3. Composition of Wood–Plastic Composites: Cellulose and Lignocellulose Fillers	75
Introduction, 75	
A Brief History of Cellulose Fillers in WPC in U.S. Patents, 78	
Beginning of WPC: Thermosetting Materials, 79	
Cellulose as a Reinforcing Ingredient in Thermoplastic Compositions, 80	
Improving Mechanical and Other Properties of WPC, 83	
Improving the Compatibility of the Filler with the Polymeric Matrix: Coupling Agents, 84	
Plastics Beyond HDPE in Wood–Plastic Composite Materials, 87	
Cellulose–Polyolefin Composite Pellets, 89	
Foamed Wood–Plastic Composites Materials, 90	
Biodegradable Wood–Plastic Composites, 91	
General Properties of Lignocellulosic Fiber as Fillers, 92	
Chemical Composition, 92	
Detrimental Effects of Lignin, 95	
Detrimental Effects of Hemicelluloses: Steam Explosion, 96	
Aspect Ratio, 97	
Density (Specific Gravity), 98	
Particle Size, 99	
Particle Shape, 99	
Particle Size Distribution, 100	
Particle Surface Area, 100	
Moisture Content, the Ability to Absorb Water, 100	
The Ability of Filler to Absorb Oil, 101	
Flammability, 101	
Effect on Mechanical Properties of the Composite Material, 101	
Effect on Fading and Durability of Plastics and Composites, 103	
Effect on Hot Melt Viscosity, 104	
Effect on Mold Shrinkage, 105	
Wood Fiber, 105	

Wood Flour, 105	
Sawdust, 106	
Rice Hulls, 106	
VOC from Rice Hulls, 108	
Long Natural Fiber, 110	
Papermaking Sludge, 111	
Biodac®, 112	
VOC from Biodac®, 112	
Rice Hulls and Biodac® as Antioxidants in WPC, 114	
References, 115	
4. Composition of Wood–Plastic Composites: Mineral Fillers	123
Introduction, 123	
General Properties of Mineral Fillers, 125	
Chemical Composition, 125	
Aspect Ratio, 125	
Density (Specific Gravity), 125	
Particle Size, 126	
Particle Shape, 127	
Particle Size Distribution, 128	
Particle Surface Area, 128	
Moisture Content: The Ability to Absorb Water, 128	
The Ability to Absorb Oil, 129	
Flame Retardant Properties, 129	
Effect on Mechanical Properties of the Composite Material, 129	
Effect on Hot Melt Viscosity, 131	
Effect on Mold Shrinkage, 131	
Thermal Properties, 132	
Color: Optical Properties, 132	
Effect on Fading and Durability of Plastics and Composites, 132	
Health and Safety, 133	
Fillers, 133	
Calcium Carbonate (CaCO ₃), 133	
Talc, 137	
Biodac® (a Blend of Cellulose and Mineral Fillers), 141	
Silica (SiO ₂), 145	
Kaolin Clay (Al ₂ O ₃ •2SiO ₂ •2H ₂ O), 146	
Mica, 146	
Wollastonite (CaSiO ₃), 147	
Glass Fibers, 147	

Fly Ash, 148	
Carbon Black, 154	
Nanofillers and Nanocomposites, 154	
Conclusions, 156	
References, 159	
5. Composition of Wood–Plastic Composites: Coupling Agents	161
Introduction, 161	
Why Such a Task?, 162	
A Brief Overview of the Chapter, 163	
Maleated Polyolefins (Polybond, Integrate, Fusabond, Epolene, Exxelor, Orevac, Lotader, Scona, and Unnamed Series), 165	
Organosilanes (Dow Corning Z-6020, Momentive A-172 and Others), 171	
Metablen™ A3000 (Acrylic-Modified Polytetrafluoroethylene, PTFE), 173	
Other Coupling Agents, 174	
Effect of Coupling Agents on Mechanical Properties of Wood-Plastic Composites: Experimental Data, 174	
Mechanisms of Crosslinking, Coupling and/or Compatibilizing Effects, 180	
Spectroscopic Studies, 180	
Rheological Studies, 186	
Kinetic Studies, 188	
Other Considerations, 189	
Effect of Coupling Agents on WPC Properties: A Summary, 191	
Effect on Flexural and Tensile Modulus, 192	
Effect on Flexural and Tensile Strength, 193	
Effect on Water Absorption, 194	
Lubricants, Compatible and not Compatible with Coupling Agent, 194	
References, 199	
6. Density (Specific Gravity) of Wood-Plastic Composites and Its Effect on WPC Properties	202
Introduction, 202	
Effect of Density (Specific Gravity) of WPC, 205	
Effect on Flexural Strength and Modulus, 205	
Effect on Oxidation and Degradation, 205	
Effect on Flammability, Ignition, Flame Spread, 208	
Effect on Moisture Content and Water Absorption, 209	
Effect on Microbial Contamination/Degradation, 210	
The Effect on Shrinkage, 211	
The Effect on the Coefficient of Friction (The Slip Coefficient), 211	

Density of Cross-Sectional Areas of Hollow Profiles of GeoDeck WPC Boards, 212	
Densities and Weight of Some Commercial Wood–Plastic Deck Boards, 215	
Determination of Density of Wood–Plastic Composites Using a Sink/Float Method, 216	
ASTM Tests Recommended for Determination of the Specific Gravity (Density), 218	
ASTM D 6111 “Standard Test Method for Bulk Density and Specific Gravity of Plastic Lumber and Shapes by Displacement”, 218	
ASTM D 792 “Standard Test Method for Density and Specific Gravity (Relative Density) of Plastics by Displacement”, 219	
ASTM D 1505 “Standard Test Method for Density of Plastics by the Density-Gradient Technique”, 220	
ASTM D 1622 “Standard Test Method for Apparent Density of Rigid Cellular Plastics”, 222	
ASTM D 1895 “Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials”, 223	
References, 224	
7. Flexural Strength (MOR) and Flexural Modulus (MOE) of Composite Materials and Profiles	225
Introduction, 225	
Basic Definitions and Equations, 225	
Moment of Inertia, 228	
Bending Moment, 231	
ASTM Recommendations, 234	
ASTM D 790, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, 234	
ASTM D 6109, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumbars”, 238	
ASTM D 6272, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending”, 241	
Flexural Strength of Composite Deck Boards, 244	
English Units and SI Units, 244	
Center Point Load, or Concentrated Load (3-pt Load), 244	
Third-Point Load (4-pt. Load, or 1/3-Span Load), 247	
Flexural Strength of Composite Deck Boards, 248	
Flexural Strength of Materials Versus Profiles, 251	
Flexural Strength for the Same Material but for Different Profiles, 252	

Comparison of Center-Point Load and Third-Point Load, 252
Quarter-Point Load (4-pt Load, 1/4-Point Load), 253
Uniformly Distributed Load, 255
Effect of Temperature on Flexural Strength of Composite Materials, 256
Effect of Commercial HDPE Materials on Flexural Strength of Composite Deck Boards, 257
Effect of Density (Specific Gravity) of Composite Materials on Flexural Strength, 258
Flexural Strength of Neat HDPE and Other Plastics, and Comparisons with that for WPCs, 258
Effect of Plastic Content on Flexural Strength of Composite Materials, 259
A Deck Board Used as a Stair Tread, 259
Flexural Modulus of Composite Deck Boards, 264
Center-Point Load, or Concentrated Load (3-pt Load), 264
Third-Point Load (4-pt. Load, or 1/3-Span Load), 265
Flexural Modulus of Composite Deck Boards, 266
Flexural Modulus of Materials Versus Profiles, 267
Flexural Modulus for the Same Material but for Different Profiles: Solid and Hollow Deck Boards, 267
Comparison of Center-Point Load and Third-Point Load, 270
Quarter-Point Load (4-pt Load, 1/4-Point Load), 270
Uniformly Distributed Load, 272
Snow on a Deck, 272
Strength, 272
Deflection, 273
Effect of Temperature on Flexural Modulus of Composite Materials, 274
Effect of Commercial HDPE on Flexural Modulus of Composite Deck Boards, 275
Effect of Density (Specific Gravity) on Flexural Modulus, 276
Effect of Plastic Content on Flexural Modulus of Composite Materials, 276
Flexural Modulus of Neat HDPE and Other Plastics and Comparisons with that for WPCs, 278
A Deck Board Used as a Stair Tread: A Critical Role of Flexural Modulus, 280
Deflection of Composite Materials: Case Studies, 281
Deflection and Bending Moment of a Soundwall Under Windloads, 281
Deflection of a Fence Board, 287
Deflection of WPC Joists, 288
Deflection of a Deck Under a Hot Tub, 289

Deflection of a Hollow Deck Board Filled with Hot Water, 290	
Deflection and Creep of Composite Deck Boards, 291	
Guardrail Systems, 302	
Composite (and PVC) Railing Systems for Which ICC-ES Reports were Issued Until November 2006, 307	
Combined Flexural and Shear Strength: a “Shotgun” Test, 311	
Mathematical Modeling of WPCs and the Real World, 312	
Verification of the Mathematical Model with Actual Conventional and Modified Composite Boards, 315	
Weight, 315	
Flexural Strength, 317	
Flexural Modulus, 317	
Impact Resistance, 317	
References, 318	
8. Compressive and Tensile Strength and Modulus of Composite Profiles	319
Introduction, 319	
Basic Definitions and Equations, 320	
ASTM Recommendations, 320	
ASTM D 638, “Standard Test Methods for Tensile Properties of Plastics”, 320	
ASTM D 5083 “Test Methods for Tensile Properties of Reinforced Thermosetting Plastics Using Straight-Sided Specimens”, 323	
ASTM D 695, “Standard Test Method for Compressive Properties of Rigid Plastics”, 324	
ASTM D 6108, “Standard Test Methods for Compressive Properties of Unreinforced and Reinforced Plastic Lumbars”, 325	
Tensile Strength of Composite Materials, 326	
Compressive Strength of Composite Materials: Examples, 328	
Tensile Modulus of Elasticity of Composite Materials, 329	
Compressive Modulus of Composite Materials, 331	
References, 332	
9. Linear Shrinkage of Extruded Wood–Plastic Composites	333
Introduction, 333	
Origin of Shrinkage, 333	
Size of Shrinkage, 336	
Effect of Density (Specific Gravity) of WPC on Its Shrinkage, 337	
Effect of Extrusion Regime on Shrinkage, 338	
Annealing of Composite Boards, 338	

Warranty Claims: Geodeck Composite Deckboards, 340	
Examples of Composite Boards Shrinkage on a Deck, 345	
References, 355	
10. Temperature Driven Expansion–Contraction of Composite Deck Boards: Linear Coefficient of Thermal Expansion–Contraction	356
Introduction, 356	
Linear Coefficient of Expansion–Contraction, 357	
Some Reservations in Applicability of Coefficients of Expansion–Contraction, 358	
ASTM Tests Recommended for Determination of the Linear Coefficient of Thermal Expansion–Contraction, 359	
ASTM D 696 “Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between –30°C and 30°C with a Vitreous Silica Dilatometer”, 359	
ASTM D 6341 “Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between –30 and 140°F (–34.4 and 60°C)”, 361	
ASTM E 228 “Standard Test Method for Linear Thermal Expansion of Solid Materials with a Vitreous Silica Dilatometer”, (Withdrawn), 361	
Linear Coefficient of Thermal Expansion–Contraction for Wood–Plastic Composites. Effect of Fillers and Coupling Agents, 362	
References, 368	
11. Slip Resistance and Coefficient of Friction of Composite Deck Boards	369
Introduction, 369	
Definitions, 369	
Explanations and Some Examples, 371	
Slip Resistance of Plastics, 371	
Slip Resistance of Wood Decks, 373	
Slip Resistance of Wood–Plastic Composite Decks, 373	
ASTM Tests Recommended for Determining Static Coefficient of Friction, 376	
ASTM D 2047 “Standard Test Method for Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine”, 376	
ASTM F 1679 “Standard Test Method for Using a Variable Incidence Tribometer (VIT)”, 376	
ASTM D 2394 “Standard Method for Simulated Service Testing of Wood and Wood-Base Finish Flooring”, 377	
Slip Resistance Using an Inclined-Plane Method, 378	

Effect of Formulation of Composite Deck Boards on Slip Resistances: Slip Enhancers, 381	
References, 382	
12. Water Absorption by Composite Materials and Related Effects	383
Introduction, 383	
“Near-Surface” Versus “Into the Bulk” Distribution of Absorbed Water in Composite Materials, 384	
Effect of Mineral Fillers on Water Absorption, 385	
Swelling (Dimensional Instability), Pressure Development, and Buckling, 386	
Short- and Long-Term Water Absorption, 396	
ASTM Recommendations, 399	
ASTM D 570, “Standard Test Methods for Water Absorption of Plastics”, 399	
ASTM D 1037, “Standard Test Method for Evaluating Properties of Wood-Based Fiber and Particle Panel Materials”, 400	
ASTM D 2842 “Test Methods for Water Absorption of Rigid Cellular Plastics”, 402	
ASTM D 6662 “Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards” 402	
ASTM D 7032 “Standard Specification for Establishing Performance Ratings for Wood–Plastic Composite Deck Boards and Guardrail Systems (Guards or Handrails)”, 402	
Effect of Cellulose Content in Composite Materials on Water Absorption, 403	
Effect of Board Density (Specific Gravity) on Water Absorption, 403	
Moisture Content of Wood and Wood–Plastic Composites, 405	
Effect of Water Absorption on Flexural Strength and Modulus, 406	
Freeze–Thaw Resistance, 407	
Effect of Board Density on Freeze–Thaw Resistance — A Case Study, 407	
Effect of Board Density and Weathering on Freeze–Thaw Resistance—A Case Study, 408	
Effect of Multiple Freeze–Thaw Cycles, 409	
Comparison of Water Absorption of Some Composite Deck Boards Available in the Market, 409	
References, 411	
13. Microbial Degradation of Wood–Plastic Composite Materials and “Black Spots” on the Surface: Mold Resistance	412
Introduction, 412	
Microbial Effects on Wood–Plastic Composites, 412	

Mold and Spores, 413	
Moisture and Ventilation: Critical Moisture Content, 413	
Wood Decay Fungi, 414	
Biocides and “Mold Resistance”, 415	
Preservatives for Wood Lumber, 416	
CCA, 416	
ACQ, 417	
PCP (The U.S. EPA Data), 417	
Creosote (The U.S. EDA Data), 417	
Microorganisms Active in Degradation and Staining of Composite Materials, 418	
Molds, 418	
Black Mold, 424	
Black Algae, 426	
Case Study 1: Staining with a Microbial Pigment, 427	
Case Study 2: Deck as a Mold Incubator, 428	
Case Study 3: Black Mold due to Low Density of a Composite Material and High Moisture, 429	
Microbial Infestation of Wood–Plastic Composite Materials, 430	
Requirements for Microbial Growth on Wood and Wood–Plastic Composites, 430	
Sensitivity and Resistance of Composite Materials to Microbial Degradation: Examples, 431	
ASTM Tests for Microbial Growth and Degradation of Wood–Plastic Composites, 434	
ASTM D 1413 “Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures”, 434	
Examples: Wood, 436	
Examples: Wood–Plastic Composites, 436	
ASTM D 2017 “Standard Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods” (Discontinued), 438	
ASTM E 2180 “Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials”, 438	
ASTM G 21 “Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi”, 439	
Effects of Formulation on Sensitivity and Resistance of Wood–Plastic Composites to Microbial Degradation, 440	
Biocides Used (Actually or Under Consideration) in Wood–Plastic Composites, 440	

Zinc Borate, (e.g., Borogard [U.S. Borax], Fiberguard [Royce International]),	440
Barium Metaborate, Busan,	444
Folpet, Fungitrol 11, Intercide TMP (carboximide),	444
Chlorothalonil (tetrachloroisophthalonitrile), Nuocide 960,	449
OBPA, Intercide ABF (10,10'-Oxybisphenoxyarsine), Vinizene BP 5-5,	449
IPBC, Polyphase®, Troy®, Intercide IBF (2-iodo-2-propynyl- <i>n</i> -butylcarbamate, 3-iodo-2-propynyl- <i>n</i> -butylcarbamate),	451
OIT, DCOIT, Octhilinone, Micro-Chek, Intercide OBF (2- <i>n</i> -Octyl-4-isothiazolin-3-one),	451
Zinc Pyrithione, Zinc Omadine, Intercide ZNP, Zinc Derivative of Mercaptopyridine 1-oxide,	452
Thiabendazole, Irgaguard F3000, 2-(4-Thiazolyl)-1 <i>H</i> -benzimidazole, 4-(2-Benzimidazolyl)thiazole, Thiabendazole, MK-360, TBZ,	453
Biocides: Accelerated Laboratory Data and the Real World,	453
References,	459
14. Flammability and Fire Rating of Wood–Plastic Composites	461
Introduction,	461
Flammability of Wood,	462
Ignition of Composite Materials,	463
Flame Spread Indexes and Fire Rating of Composite Materials,	464
Effect of Mineral Fillers on Flammability,	467
Smoke and Toxic Gases, and Smoke Development Index,	467
Flame Retardants for Plastics and Composite Materials,	468
Flame Retardants in Plastics,	471
Restrictions or Prohibitions of Some Brominated Flame Retardants,	471
Chlorine-Containing Flame Retardants,	472
ATH (Aluminum Trihydrate) and MDH (Magnesium Hydroxide),	473
ATH Dehydration: A Quantitative Approach,	474
Flame Retardants with Wood–Plastic Composites,	476
Nanoparticles as Flame Retardants,	476
ASTM Recommendations,	477
ASTM D 635 “Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position”,	478
ASTM D 1929 “Standard Test Method for Determining Ignition Temperature of Plastics”,	478
ASTM E 84, “Standard Test Method for Surface Burning Characteristics of Building Materials”,	480
ASTM E 1354 “Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter”,	482

E 162 “Standard Test Method for Surface Flammability of Materials Using a Radiant Heat Energy Source”, 483	
E 662 “Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials”, 484	
Fire Performance of Composite Decks and Deck Boards, 485	
References, 491	
15. Thermo- and Photooxidative Degradation and Lifetime of Composite Building Materials	493
Introduction. Lifetime of Plastics and Plastic-based Composites: Examples, 493	
Thermooxidation, Photooxidation, Oxidative Degradation, and Product Crumbling and Failure, 496	
Factors Accelerating the Oxidative Degradation of Composites, 502	
Density (Specific Gravity) of the Composite, 503	
Temperature, 508	
The Physical and the Chemical Structure of the Polymer, 514	
History of Plastic (Virgin, Recycled), 516	
The Type and Amount of Cellulose Fiber, 516	
The Type and Amount of Mineral Fillers, 517	
The Presence of Stress, 517	
The Presence of Metal Catalysts, 522	
The Presence of Moisture, 524	
Antioxidants and Their Amounts, 526	
Solar Radiation (UV Light), 531	
Amount of Added Regrinds, If Any, 540	
ASTM Recommendations, 541	
ASTM Tests for Oxidative Induction Time, 541	
ASTM D 3895 “Standard Test Method for Oxidative Induction Time of Polyolefins by Differential Scanning Calorimetry”, 541	
ASTM D 5885 “Standard Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential Scanning Calorimetry”, 545	
ASTM Tests for Determination of Phenolic Antioxidants in Plastics, 546	
ASTM D 1996 “Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Low-Density Polyethylene Using Liquid Chromatography”, 547	
ASTM D 5524 “Standard Test Method for Determination of Phenolic Antioxidants in High-Density Polyethylene Using Liquid Chromatography”, 548	
ASTM D 5815 “Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Linear Low-Density Polyethylene Using Liquid Chromatography”, 548	

ASTM D 6042 "Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Polypropylene Homopolymer Formulations Using Liquid Chromatography",	548
ASTM D 6953 "Standard Test Method for Determination of Antioxidants and Erucamide Slip Additives in Polyethylene Using Liquid Chromatography",	548
ASTM D 3012 "Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven,	549
ASTM D 5510 "Standard Practice for Heat Aging of Oxidatively Degradable Plastics",	550
Surface Temperature of Composite Decking and Railing Systems,	550
Life Span of Zero-Antioxidant GeoDeck Decks in Various Areas of the United States,	556
The OIT and Lifetime of Composite Deck Boards,	564
Durability (in Terms of Oxidative Degradation) of Wood-Plastic Composite Deck Boards Available in the Current Market,	565
Oxidative Degradation and Crumbling of GeoDeck Deck Boards: History of the Case and Correction of the Problem,	567
Density, Porosity, and Mechanical Properties of GeoDeck before the Problem had Emerged,	567
Emerging of the Problem,	569
Density (Specific Gravity) of GeoDeck Boards in Pre-October 2003,	569
Correction of the Crumbling Problem,	570
Antioxidant Level,	570
Density,	571
The OIT Procedure: Proxy of Lifetime at Accelerated Oxidation,	571
Accelerated (Artificial) Weathering,	572
Air-Flow Oven,	573
Addendum: Test Method for Oxidative Induction Time of Filled Composite Materials by Differential Scanning Calorimetry,	574
Case Studies,	576
GeoDeck Decks in Arizona,	576
GeoDeck Decks in Massachusetts,	576
GeoDeck Voluntary Recall,	581
Problem GeoDeck Decks: Installation Time and Warranty Claims,	582
References,	584
16. Photooxidation and Fading of Composite Building Materials	585
Introduction,	585
How Fading is Measured,	586
Fading: Some Introductory Definitions,	588

Accelerated and Natural Weathering of Wood-Plastic Composite Materials and a Correlation (or a Lack of It) Between Them: The Acceleration Factor, 590	
Fading of Commercial Wood-Plastic Composite Materials, 596	
Fading of Composite Deck Boards Versus Their Crumbling Due to Oxidation, 600	
Factors Accelerating or Slowing Down Fading of Composites, 601	
Density (Specific Gravity) of the Composite, 601	
Temperature, 602	
UV Absorbers and Their Amounts, 602	
Pigments and Their Amounts, 603	
Antioxidants and Their Amounts, 605	
History of Plastics (Virgin, Recycled), 605	
Effect of Moisture in the Composite, 605	
The Type and Amount of Cellulose Fiber, 606	
Extruded Versus Injection-Molded Wood-Plastic Composite Materials, 606	
ASTM Recommendations, 607	
ASTM D 2565 “Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications”, 607	
ASTM D 1435 “Standard Practice for Outdoor Weathering of Plastics”, 608	
ASTM D 4329 “Practice for Fluorescent UV Exposure of Plastics”, 608	
ASTM D 4364 “Practice for Performing Outdoor Accelerated Weathering Tests of Plastics Using Concentrated Sunlight”, 609	
ASTM D 4459 “Practice for Xenon-Arc Exposure of Plastics Intended for Indoor Applications”, 609	
ASTM D 5071 “Practice for Exposure of Photodegradable Plastics in a Xenon-Arc Apparatus”, 610	
ASTM D 5208 “Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics”, 610	
ASTM D 5272 “Practice for Outdoor Exposure Testing of Photodegradable Plastics”, 611	
ASTM G 155 “Standard Practice for Operating Xenon-Arc Light Apparatus for Exposure of Nonmetallic Materials”, 611	
Addendum, 612	
References, 616	
17. Rheology and a Selection of Incoming Plastics for Composite Materials	617
Introduction: Rheology of Neat and Filled Plastics, Composite Materials, and Regrinds, 617	

Basic Definitions and Equations, 618	
Shear Rate, Shear Stress, Shear Viscosity, Dynamic Viscosity, Apparent Viscosity, Limiting Viscosity, 618	
Shear-Thinning Effect and the Power Law Equation, 620	
Volumetric Flow Rate and a Pressure Gradient Along the Capillary, 623	
Wall Slip Phenomenon, 625	
The Rabinowitsch Correction, 626	
ASTM Recommendations in the Area of Capillary Rheometry, 627	
ASTM D 1238-04, "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer", 628	
ASTM D 3835-02, "Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer", 629	
ASTM D 5422-03, "Standard Test Method for Measurement of Properties of Thermoplastic Materials by Screw-Extrusion Capillary Rheometer", 630	
ASTM Recommendations in the Area of Rotational Rheometry, 630	
ASTM D 4440-01, "Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology", 631	
ASTM D 4065-01, "Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures", 632	
Common Observations, 633	
Neat Plastics, 633	
Molecular Weight of Polyethylenes and Viscosity of Their Hot Melts, 633	
Effect of Temperature on Viscosity, 633	
The Power-Law Index of Some Neat Plastics, 635	
The Power-Law Index and Molecular Weight Distribution, 636	
Composite Materials, 636	
Rheology of Filled Plastics and Wood Plastic Composites, 636	
Filler Increases the Dynamic Viscosity, 637	
Viscosity and the Power-Law Index of Wood-Plastic Composites Materials, 638	
Steady Shear Viscosity and Dynamic Viscosity Data, 639	
Capillary Rheometer and an Extruder: Are They in Agreement?, 643	
Extrudate Swell, 643	
Almost Uncharted Areas of Composite and Plastic Rheology, 644	
Effect of Particle Size of Filler on Rheology of Wood-Plastic Composites, 644	

Effect of Coupling Agents, Lubricants, and Polymer Processing Additives, 645
Varying Plastic Sources—Which to Choose for Composite Materials?, 647
Rheology of Regrinds of Wood-Plastic Composites, 651
Melt Fracture of Plastics and Their Composites and Regrinds: Surface Tearing, 656
References, 670