
Contents

List of Tables	xxv
Preface	xxxii
Acknowledgments	xxxiii

VOLUME 1

PART 1: ESSENTIALS

CHAPTER 1

Isolation and Quantification of DNA

1

INTRODUCTION	
DNA Isolation	2
Commercial Kits for Purification of DNA	3
Quantifying DNA	5
PROTOCOLS	
1 Preparation of Plasmid DNA by Alkaline Lysis with SDS: Minipreps	11
2 Preparation of Plasmid DNA by Alkaline Lysis with SDS: Maxipreps	15
3 Isolating DNA from Gram-Negative Bacteria (e.g., <i>E. coli</i>)	19
4 Precipitation of DNA with Ethanol	21
5 Precipitation of DNA with Isopropanol	26
6 Concentrating and Desalting Nucleic Acids with Microconcentrators	28
7 Concentrating Nucleic Acids by Extraction with Butanol	30
8 Preparation of Single-Stranded Bacteriophage M13 DNA by Precipitation with Polyethylene Glycol	31
9 Plating Bacteriophage M13	34
10 Growing Bacteriophage M13 in Liquid Culture	38
11 Preparation of Double-Stranded (Replicative Form) Bacteriophage M13 DNA	41
12 Isolation of High-Molecular-Weight DNA Using Organic Solvents to Purify DNA	44
13 Isolation of High-Molecular-Weight DNA from Mammalian Cells Using Proteinase K and Phenol	47

14	A Single-Step Method for the Simultaneous Preparation of DNA, RNA, and Protein from Cells and Tissues	54
15	Preparation of Genomic DNA from Mouse Tails and Other Small Samples	58
	• Alternative Protocol: Isolation of DNA from Mouse Tails without Extraction by Organic Solvents	61
	• Alternative Protocol: One-Tube Isolation of DNA from Mouse Tails	62
16	Rapid Isolation of Yeast DNA	64
17	Using Ethidium Bromide to Estimate the Amount of DNA in Bands after Electrophoresis through Minigels	66
18	Estimating the Concentration of DNA by Fluorometry Using Hoechst 33258	68
19	Quantifying DNA in Solution with PicoGreen	71
INFORMATION PANELS		
	DNA Extraction from Formaldehyde-Fixed Tissue Embedded in Paraffin Blocks	72
	Polyethylene Glycol	73
	α -Complementation	74
	X-Gal	76
	Minimizing Damage to Large DNA Molecules	77
	Spectrophotometry	78
CHAPTER 2		
	Analysis of DNA	81
INTRODUCTION		
	Agarose Gel Electrophoresis	82
	Analysis of DNA Fragments	86
	Recovering DNA from Gels	87
	Southern Blotting	88
PROTOCOLS		
1	Agarose Gel Electrophoresis	94
2	Detection of DNA in Agarose Gels by Staining	99
3	Polyacrylamide Gel Electrophoresis	104
4	Detection of DNA in Polyacrylamide Gels by Staining	110
5	Detection of DNA in Polyacrylamide Gels by Autoradiography	112
6	Alkaline Agarose Gel Electrophoresis	114
	• Additional Protocol: Autoradiography of Alkaline Agarose Gels	117
7	Imaging: Autoradiography and Phosphorimaging	119
8	Recovery of DNA from Agarose Gels Using Glass Beads	125
9	Recovery of DNA from Low-Melting-Temperature Agarose Gels: Organic Extraction	127
10	Isolation of DNA Fragments from Polyacrylamide Gels by the Crush and Soak Method	130
11	Southern Blotting	133
12	Southern Blotting: Simultaneous Transfer of DNA from an Agarose Gel to Two Membranes	141

13	Southern Hybridization of Radiolabeled Probes to Nucleic Acids Immobilized on Membranes	144
	• Additional Protocol: Stripping Probes from Membranes	150
INFORMATION PANELS		
	Formamide and Its Uses in Molecular Cloning	153
	Rapid Hybridization Buffers	155
CHAPTER 3		
	Cloning and Transformation with Plasmid Vectors	157
<hr/>		
INTRODUCTION		
	Plasmid Vectors	158
	Transformation	159
PROTOCOLS		
1	The Hanahan Method for Preparation and Transformation of Competent <i>E. coli</i> : High-Efficiency Transformation	162
2	The Inoue Method for Preparation and Transformation of Competent <i>E. coli</i> : "Ultracompetent" Cells	168
3	Easy Transformation of <i>E. coli</i> : Nanoparticle-Mediated Transformation	173
	• Alternative Protocol: One-Step Preparation of Competent <i>E. coli</i> : Transformation and Storage of Bacterial Cells in the Same Solution	175
4	Transformation of <i>E. coli</i> by Electroporation	177
5	Cloning in Plasmid Vectors: Directional Cloning	183
6	Cloning in Plasmid Vectors: Blunt-End Cloning	186
7	Dephosphorylation of Plasmid DNA	189
8	Attaching Phosphorylated Adaptors/Linkers to Blunt-Ended DNAs	192
9	Cloning PCR Products: Addition of Restriction Sites to the Termini of Amplified DNA	194
10	Cloning PCR Products: Blunt-End Cloning	197
11	Cloning PCR Products: Making T Vectors	200
12	Cloning PCR Products: TA Cloning	203
13	Cloning PCR Products: TOPO TA Cloning	206
14	Screening Bacterial Colonies Using X-Gal and IPTG: α -Complementation	210
INFORMATION PANELS		
	Caring for <i>E. coli</i>	213
	The History of Transformation of Bacteria by DNA	217
	A Guide to Cloning the Products of Polymerase Chain Reactions	218
	BioBricks and the Ordered Assembly of DNA Fragments	225
	TOPO Tools: Creating Linear Expression Constructs with Functional Elements	227
	Antibiotics	229
	Adaptors	232
	Linkers	234
	Ligation and Ligases	235

Condensing and Crowding Reagents	240
The Discovery of Restriction Enzymes	241
Restriction Enzymes	242
Chloramphenicol	245
The <i>ccdB</i> Gene	247
Bacteriophage λ	248
Bacteriophage M13	249
Plasmids	251
Cosmids	258

CHAPTER 4

Gateway Recombinational Cloning	261
--	-----

*John S. Reece-Hoyes and Albertha J.M. Walhout***INTRODUCTION**

Basic Principles and Applications of Gateway Cloning	262
Disadvantages of Gateway Cloning and Alternative Cloning Systems	264

PROTOCOLS

1 Propagating Gateway Vectors	267
2 Generating an ORF Entry Clone and Destination Clone	270
3 Using Multisite LR Cloning to Generate a Destination Clone	277

INFORMATION PANEL

Generating Gateway-Compatible Vectors	280
---------------------------------------	-----

CHAPTER 5

Working with Bacterial Artificial Chromosomes and Other High-Capacity Vectors	281
--	-----

*Nathaniel Heintz and Shaoching Gong***INTRODUCTION**

Development of High-Capacity Vectors: Advantages and Disadvantages	282
Working with Bacterial Artificial Chromosomes	286

PROTOCOLS

1 Small-Scale Isolation of BAC DNA and Verification by PCR	294
2 Large-Scale Preparation and Linearization of BAC DNA	297
3 Examination of BAC DNA Quality and Quantity by Pulsed-Field Gel Electrophoresis	301
4 Two-Step BAC Engineering: Preparation of Shuttle Vector DNA	303
5 Preparation of the A Homology Arm (A-Box) and B Homology Arm (B-Box)	306
6 Cloning of the A and B Homology Arms into the Shuttle Vector	309
7 Preparation and Verification of the Recombinant Shuttle Vector	312

8	Electroporation of Competent BAC Host Cells with the Recombinant Shuttle Vector	315
9	Verification of Cointegrates and Selection of Resolved BAC Clones	317
10	One-Step BAC Modification: Preparation of Plasmids	321
11	Preparation of the A Homology Arm (A-Box)	324
12	Cloning of the A Homology Arm into Reporter-Shuttle Vector	326
13	Transformation of the BAC Host with the RecA Vector	329
14	Transfer of the Reporter Vector into BAC/RecA Cells and Selection of Cointegrates	331
15	Growth of <i>S. cerevisiae</i> and Preparation of DNA	334
16	Small-Scale Preparations of Yeast DNA	336
INFORMATION PANELS		
	CRE- <i>loxP</i>	338
	Using EGFP as a Reporter	342
	Primer Design for Homology Arms, Cointegration, and Resolution	343
	Yeast Media	344

CHAPTER 6

Extraction, Purification, and Analysis of RNA from Eukaryotic Cells

345

INTRODUCTION

PROTOCOLS

	Introduction to the Isolation of Total RNA Using Monophasic Lysis Reagents	348
1	Purification of Total RNA from Mammalian Cells and Tissues	351
	• Alternative Protocol: Preparing RNA from Smaller Samples	354
2	Isolation of Total RNA from Zebrafish Embryos and Adults	355
3	Total RNA Isolation from <i>Drosophila melanogaster</i>	357
4	Total RNA Extraction from <i>Caenorhabditis elegans</i>	359
5	Total RNA Extraction from <i>Saccharomyces cerevisiae</i> Using Hot Acid Phenol	362
6	Quantifying and Storing RNA	365
7	Precipitation of RNA with Ethanol	372
8	Removing DNA Contamination from RNA Samples by Treatment with RNase-Free DNase I	375
9	Isolation of Poly(A) ⁺ Messenger RNA Using Magnetic Oligo(dT) Beads	377
Introduction to Hybridization of RNA by Northern Transfer		381
10	Separation of RNA according to Size: Electrophoresis of RNA through Agarose Gels Containing Formaldehyde	388
11	Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels	393
12	Transfer and Fixation of Denatured RNA in Agarose Gels to Membranes	401
	• Alternative Protocol: Capillary Transfer by Downward Flow	406

13	Transfer and Fixation of Denatured RNA in Polyacrylamide Gels to Membranes by Electrophoretic Transfer	408
14	Northern Hybridization	410
15	Dot and Slot Hybridization of Purified RNA	415
	Introduction to Mapping RNA	420
16	Mapping RNA with Nuclease S1	430
17	Ribonuclease Protection: Mapping RNA with Ribonuclease and Radiolabeled RNA Probes	437
18	Analysis of RNA by Primer Extension	445
	INFORMATION PANELS	
	How to Win the Battle with RNase	450
	Inhibitors of RNases	451
	Diethylpyrocarbonate	452
	Nuclease S1	454
	CHAPTER 7	
	Polymerase Chain Reaction	455
	INTRODUCTION	
	The Basic Polymerase Chain Reaction	456
	Design of Oligonucleotide Primers for Basic PCR	462
	Detecting, Analyzing, and Quantifying mRNAs	464
	Contamination in PCR	466
	PROTOCOLS	
1	The Basic Polymerase Chain Reaction	470
2	Hot Start PCR	477
3	Touchdown PCR	481
4	PCR Amplification of GC-Rich Templates	484
5	Long and Accurate PCR (LA PCR)	490
6	Inverse PCR	494
7	Nested PCR	499
8	Amplification of cDNA Generated by Reverse Transcription of mRNA: Two-Step RT-PCR	503
9	Rapid Amplification of Sequences from the 5' Ends of mRNAs: 5'-RACE	515
10	Rapid Amplification of Sequences from the 3' Ends of mRNAs: 3'-RACE	523
11	Screening Colonies by PCR	531
	INFORMATION PANELS	
	Taq DNA Polymerase	533
	PCR in Theory	537
	Ribonuclease H	538
	The <i>dut</i> and <i>ung</i> Genes of <i>E. coli</i>	539
	Terminal Transferase	540

CHAPTER 8	
Bioinformatics	541
<i>Jui-Hung Hung and Zhiping Weng</i>	

INTRODUCTION

PROTOCOLS

1 Visualizing Genomic Annotations with the UCSC Genome Browser	544
Introduction to Sequence Alignment and Homology Search	554
2 Sequence Alignment and Homology Search with BLAST and ClustalW	557
3 Designing PCR Primers Using Primer3Plus	564
Introduction to Expression Profiling by Microarray and RNA-seq	571
4 Expression Profiling by Microarray and RNA-seq	577
Introduction to Mapping Billions of Short Reads to a Reference Genome	588
5 Mapping Billions of Short Reads to a Reference Genome	591
Introduction to Peak-Finding Algorithms	598
6 Identifying Regions Enriched in a ChIP-seq Data Set (Peak Finding)	604
Introduction to Motif Finding	612
7 Discovering <i>cis</i> -Regulatory Motifs	617

INFORMATION PANELS

Data Formats	625
Algorithms, Portals, and Methods	628

VOLUME 2

PART 2: ANALYSIS AND MANIPULATION OF DNA AND RNA

CHAPTER 9	
Quantification of DNA and RNA by Real-Time Polymerase Chain Reaction	631

INTRODUCTION

Real-Time PCR Chemistries	632
Instruments for Real-Time PCR	639
Extracting Data from a Real-Time PCR Experiment: Data Analysis and Normalization Methods	641
Designing Primers and Probes and Optimizing Conditions for Real-Time PCR	643
Constructing a Standard Curve	648
Performing Real-Time PCR	650
Performing Real-Time RT-PCR	650
MIQE Guidelines	654
Real-Time PCR Protocols	654

PROTOCOLS	
1 Optimizing Primer and Probe Concentrations for Use in Real-Time PCR	658
2 Constructing a Standard Curve	663
3 Quantification of DNA by Real-Time PCR	667
4 Quantification of RNA by Real-Time RT-PCR	670
5 Analysis and Normalization of Real-Time PCR Experimental Data	674
INFORMATION PANELS	
Multiplex PCR	680
SNP Genotyping	681
CHAPTER 10	
Nucleic Acid Platform Technologies	683
<i>Oliver Rando</i>	
INTRODUCTION	
Microarray Applications	685
Performing Microarray Experiments	688
PROTOCOLS	
1 Printing Microarrays	694
2 Round A/Round B Amplification of DNA	698
3 T7 Linear Amplification of DNA (TLAD) for Nucleosomal and Other DNA < 500 bp	702
4 Amplification of RNA	709
5 Direct Cyanine-dUTP Labeling of RNA	715
6 Indirect Aminoallyl-dUTP Labeling of RNA	718
7 Cyanine-dCTP Labeling of DNA Using Klenow	721
8 Indirect Labeling of DNA	724
9 Blocking Polylysines on Homemade Microarrays	726
10 Hybridization to Homemade Microarrays	729
CHAPTER 11	
DNA Sequencing	735
<i>Elaine Mardis and W. Richard McCombie</i>	
INTRODUCTION	
History of Sanger/Dideoxy DNA Sequencing	736
Next-Generation Sequencing	742
Overview of Next-Generation Sequencing Instruments	752
Sanger Sequencing versus Next-Generation Sequencing: When to Do What?	760
Introduction to Protocols	761

SECTION I. LIBRARY PREPARATIONS FOR VARIOUS PLATFORMS	
Capillary Sequencing	
1 Preparing Plasmid Subclones for Capillary Sequencing	764
2 Preparing PCR Products for Capillary Sequencing	770
3 Cycling Sequencing Reactions	773
Illumina	
4 Whole Genome: Manual Library Preparation	776
5 Whole Genome: Automated, Nonindexed Library Preparation	783
• Additional Protocol: Automated Library Preparation	789
6 Whole Genome: Automated, Indexed Library Preparation	792
7 Preparation of a 3-kb Mate-Pair Library for Illumina Sequencing	799
8 Preparation of an 8-kb Mate-Pair Library for Illumina Sequencing	808
• Additional Protocol: AMPure Bead Calibration	821
9 RNA-Seq: RNA Conversion to cDNA and Amplification	824
• Additional Protocol: RNAClean XP Bead Cleanup (before RNA-Seq)	830
10 Solution-Phase Exome Capture	831
• Additional Protocol: AMPure XP Bead Cleanup	840
• Additional Protocol: Agarose Gel Size Selection	842
11 Automated Size Selection	844
12 Library Quantification Using SYBR Green-qPCR	848
13 Library Quantification Using PicoGreen Fluorometry	852
14 Library Quantification: Fluorometric Quantitation of Double-Stranded or Single-Stranded DNA Samples Using the Qubit System	857
Pyrosequencing	
15 Preparation of Small-Fragment Libraries for 454 Sequencing	859
16 ssDNA Library Capture and emPCR	866
17 Roche/454 Sequencer: Executing a Sequencing Run	874
SECTION II. POSTSEQUENCING ANALYSES	
18 Validation	883
19 Quality Assessment of Sequence Data	885
20 Data Analysis	887
INFORMATION PANELS	
Biotin	888
Magnetic Beads	890
Fragmenting of DNA	892
CHAPTER 12	
Analysis of DNA Methylation in Mammalian Cells	893
<i>Paul M. Lizardi, Qin Yan, and Narendra Wajapeyee</i>	
<hr/>	
INTRODUCTION	
DNA Methylation Affects and Reveals Biological Phenomena	894
Experimental Approaches for Analysis of DNA Methylation	895

Advantages and Limitations of Different Approaches for Analyzing DNA Methylation	898
Future Perspectives	899
PROTOCOLS	
1 DNA Bisulfite Sequencing for Single-Nucleotide-Resolution DNA Methylation Detection	900
2 Methylation-Specific PCR for Gene-Specific DNA Methylation Detection	907
3 Methyl-Cytosine-Based Immunoprecipitation for DNA Methylation Analysis	911
4 High-Throughput Deep Sequencing for Mapping Mammalian DNA Methylation	915
5 Roche 454 Clonal Sequencing of Bisulfite-Converted DNA Libraries	927
6 Illumina Sequencing of Bisulfite-Converted DNA Libraries	932
INFORMATION PANELS	
Public Domain Software for Identifying CpG Islands in Promoter and Coding Regions of Mammalian Genes	937
Designing Primers for the Amplification of Bisulfite-Converted Product to Perform Bisulfite Sequencing and MS-PCR	939
Postsequence Processing of High-Throughput Bisulfite Deep-Sequencing Data	940
CHAPTER 13	
Preparation of Labeled DNA, RNA, and Oligonucleotide Probes	943
INTRODUCTION	
Radioactive versus Nonradioactive Labeling of Nucleic Acids	944
Types of Nonradioactive Detection Systems	948
Designing Oligonucleotides for Use as Probes	953
PROTOCOLS	
1 Random Priming: Labeling of Purified DNA Fragments by Extension of Random Oligonucleotides	965
2 Random Priming: Labeling of DNA by Extension of Random Oligonucleotides in the Presence of Melted Agarose	971
3 Labeling of DNA Probes by Nick Translation	974
4 Labeling of DNA Probes by Polymerase Chain Reaction	978
• Additional Protocol: Asymmetric Probes	982
5 Synthesis of Single-Stranded RNA Probes by In Vitro Transcription	984
• Additional Protocol: Using PCR to Add Promoters for Bacteriophage-Encoded RNA Polymerases to Fragments of DNA	991
6 Synthesis of cDNA Probes from mRNA Using Random Oligonucleotide Primers	994
7 Radiolabeling of Subtracted cDNA Probes by Random Oligonucleotide Extension	997
8 Labeling 3' Termini of Double-Stranded DNA Using the Klenow Fragment of <i>E. coli</i> DNA Polymerase I	1003
9 Dephosphorylation of DNA Fragments with Alkaline Phosphatase	1009
10 Phosphorylation of DNA Molecules with Protruding 5'-Hydroxyl Termini	1012

11	Phosphorylation of DNA Molecules with Dephosphorylated Blunt Ends or Recessed 5' Termini	1015
12	Phosphorylating the 5' Termini of Oligonucleotides Using T4 Polynucleotide Kinase	1018
13	Labeling the 3' Termini of Oligonucleotides Using Terminal Deoxynucleotidyl Transferase	1021
	• Alternative Protocol: Synthesizing Nonradiolabeled Probes Using TdT	1023
	• Additional Protocol: Tailing Reaction	1024
	• Additional Protocol: Modifications for Synthesizing Nonradiolabeled Probes	1026
14	Labeling of Synthetic Oligonucleotides Using the Klenow Fragment of <i>E. coli</i> DNA Polymerase I	1028
15	Purification of Labeled Oligonucleotides by Precipitation with Ethanol	1032
16	Purification of Labeled Oligonucleotides by Size-Exclusion Chromatography	1034
17	Purification of Labeled Oligonucleotides by Chromatography on a Sep-Pak C ₁₈ Column	1037
18	Hybridization of Oligonucleotide Probes in Aqueous Solutions: Washing in Buffers Containing Quaternary Ammonium Salts	1039

INFORMATION PANELS

Preparation of Stock Solutions of dNTPs	1043
<i>E. coli</i> DNA Polymerase I and the Klenow Fragment	1044
In Vitro Transcription Systems	1050
Alkaline Phosphatase	1053
Melting Temperatures	1055

CHAPTER 14

Methods for In Vitro Mutagenesis 1059

Matteo Forloni, Alex Y. Liu, and Narendra Wajapeyee

INTRODUCTION

Mutagenesis Approaches	1064
Research Goals	1065
Commercial Kits	1065

PROTOCOLS

1	Random Mutagenesis Using Error-Prone DNA Polymerases	1068
2	Creating Insertions or Deletions Using Overlap Extension PCR Mutagenesis	1080
3	In Vitro Mutagenesis Using Double-Stranded DNA Templates: Selection of Mutants with DpnI	1087
4	Altered β -Lactamase Selection Approach for Site-Directed Mutagenesis	1095
5	Oligonucleotide-Directed Mutagenesis by Elimination of a Unique Restriction Site (USE Mutagenesis)	1102
6	Saturation Mutagenesis by Codon Cassette Insertion	1108
7	Random Scanning Mutagenesis	1115
8	Multisite-Directed Mutagenesis	1120
9	Megaprimer PCR-Based Mutagenesis	1124

INFORMATION PANELS	
Domain Mutagenesis	1127
High-Throughput Site-Directed Mutagenesis of Plasmid DNA	1128
<i>N</i> ⁶ -Methyladenine, Dam Methylase, and Methylation-Sensitive Restriction Enzymes	1129
PART 3: INTRODUCING GENES INTO CELLS	
CHAPTER 15	
Introducing Genes into Cultured Mammalian Cells	1131
<i>Priti Kumar, Arvindhan Nagarajan, and Pradeep D. Uchil</i>	
<hr/>	
INTRODUCTION	
Transient Versus Stable Transfection	1133
Transfection Methods	1133
Transfection Controls	1133
Optimization and Special Considerations	1136
Assessing Cell Viability in Transfected Cell Lines	1137
PROTOCOLS	
1 DNA Transfection Mediated by Cationic Lipid Reagents	1139
• Alternative Protocol: Transfection Using DOTMA and DOGS	1145
• Additional Protocol: Histochemical Staining of Cell Monolayers for β -Galactosidase	1148
2 Calcium-Phosphate-Mediated Transfection of Eukaryotic Cells with Plasmid DNAs	1150
• Alternative Protocol: High-Efficiency Calcium-Phosphate-Mediated Transfection of Eukaryotic Cells with Plasmid DNAs	1156
3 Calcium-Phosphate-Mediated Transfection of Cells with High-Molecular-Weight Genomic DNA	1160
• Alternative Protocol: Calcium-Phosphate-Mediated Transfection of Adherent Cells	1163
• Alternative Protocol: Calcium-Phosphate-Mediated Transfection of Cells Growing in Suspension	1165
4 Transfection Mediated by DEAE-Dextran: High-Efficiency Method	1167
• Alternative Protocol: Transfection Mediated by DEAE-Dextran: Increased Cell Viability	1170
5 DNA Transfection by Electroporation	1173
6 Analysis of Cell Viability by the alamarBlue Assay	1177
7 Analysis of Cell Viability by the Lactate Dehydrogenase Assay	1180
8 Analysis of Cell Viability by the MTT Assay	1183
INFORMATION PANELS	
Optical Transfection	1186
Cotransformation	1188
Selective Agents for Stable Transformation	1190
Lipofection	1194

Linearizing Plasmids before Transfection	1197
Transfection of Mammalian Cells with Calcium Phosphate–DNA Coprecipitates	1198
Chloroquine Diphosphate	1200
DEAE-Dextran Transfection	1201
Electroporation	1203
 CHAPTER 16	
Introducing Genes into Mammalian Cells: Viral Vectors	1209
<i>Guangping Gao and Miguel Sena-Esteves</i>	
 INTRODUCTION	
Factors to Consider When Choosing a Viral Vector	1211
The Major Types of Viruses Currently Used as Vectors	1212
In Vivo Expression	1221
Adenovirus Vectors	1221
Adeno-Associated Virus Vectors	1224
Retrovirus and Lentivirus Vectors	1227
 PROTOCOLS	
1 Construction of Recombinant Adenovirus Genomes by Direct Cloning	1233
2 Release of the Cloned Recombinant Adenovirus Genome for Rescue and Expansion	1238
3 Purification of the Recombinant Adenovirus by Cesium Chloride Gradient Centrifugation	1244
4 Characterization of the Purified Recombinant Adenovirus Vector for Viral Genome Structure by Restriction Enzyme Digestions	1249
5 Measuring the Infectious Titer of Recombinant Adenovirus Vectors Using TCID ₅₀ End-Point Dilution and qPCR	1253
• Additional Protocol: Preparation of a DNA Standard for qPCR	1262
6 Detection Assay for Replication-Competent Adenovirus by Concentration Passage and Real-Time qPCR	1264
7 Production of rAAVs by Transient Transfection	1274
8 Purification of rAAVs by Cesium Chloride Gradient Sedimentation	1278
9 Purification of rAAVs by Iodixanol Gradient Centrifugation	1283
10 Purification of rAAV2s by Heparin Column Affinity Chromatography	1287
11 Enrichment of Fully Packaged Virions in Column-Purified rAAV Preparations by Iodixanol Gradient Centrifugation Followed by Anion-Exchange Column Chromatography	1290
12 Titration of rAAV Genome Copy Number Using Real-Time qPCR	1294
13 Sensitive Determination of Infectious Titer of rAAVs Using TCID ₅₀ End-Point Dilution and qPCR	1298
14 Analysis of rAAV Sample Morphology Using Negative Staining and High-Resolution Electron Microscopy	1301
15 Analysis of rAAV Purity Using Silver-Stained SDS-PAGE	1304
16 Production of High-Titer Retrovirus and Lentivirus Vectors	1307

17 Titration of Lentivirus Vectors	1314
18 Monitoring Lentivirus Vector Stocks for Replication-Competent Viruses	1319
 INFORMATION PANELS	
Adenovirus Vectors	1322
AAV Vectors	1323
Lentivirus Vectors	1324
Basic Elements in Viral Vectors	1326
Assays Done in Transduced Cells	1328
Transgene Expression Cassettes	1330

VOLUME 3

PART 4: GENE EXPRESSION

CHAPTER 17

Analysis of Gene Regulation Using Reporter Systems	1335
<i>Pradeep D. Uchil, Arvindhyan Nagarajan, and Priti Kumar</i>	

INTRODUCTION	
Introduction to Reporter Systems	1336
Reporter Genes Used in the Analysis of Regulatory Elements	1336
Assaying for β -Galactosidase in Extracts of Mammalian Cells	1338
Assaying for Luciferase in Extracts of Mammalian Cells	1339
Tetracycline-Responsive Expression Systems	1341
 PROTOCOLS	
1 Assay for β -Galactosidase in Extracts of Mammalian Cells	1346
• Additional Protocol: Chemiluminescent Assay for β -Galactosidase Activity	1350
2 Single Luciferase Reporter Assay	1354
3 Dual Luciferase Reporter Assay	1359
4 Using ELISA to Measure GFP Production	1366
5 Generation of Cell Lines with Tetracycline-Regulated Gene Expression	1370
• Additional Protocol: Selecting Stable Clones via Limiting Dilution of Suspension Cells	1378
 INFORMATION PANELS	
Fluorescent Proteins	1381
Epitope Tagging	1394
β -Galactosidase	1401
Luciferase	1406
Tetracycline	1409

CHAPTER 18

RNA Interference and Small RNA Analysis	1415
---	------

Zengjian Li and Phillip D. Zamore

INTRODUCTION

Reverse Genetics by RNAi	1419
Analysis of Small RNAs	1425

PROTOCOLS

1 Preparation of siRNA Duplexes	1431
2 RNAi in Mammalian Cells by siRNA Duplex Transfection	1434
3 RNAi in <i>Drosophila</i> S2 Cells by siRNA Duplex Transfection	1437
4 Preparation of dsRNAs by In Vitro Transcription	1440
5 RNAi in <i>Drosophila</i> S2 Cells by dsRNA Soaking	1445
6 RNAi in <i>Drosophila</i> S2 Cells by dsRNA Transfection	1447
7 Analysis of Small RNAs by Northern Hybridization	1448
8 Analysis of Small RNAs by Quantitative Reverse Transcription PCR	1453
9 Construction of Small RNA Libraries for High-Throughput Sequencing	1456
10 Preparation of Antisense Oligonucleotides to Inhibit miRNA Function	1466
11 Inhibiting miRNA Function by Antisense Oligonucleotides in Cultured Mammalian Cells	1468
12 Inhibiting miRNA Function by Antisense Oligonucleotides in <i>Drosophila</i> S2 Cells	1470

INFORMATION PANEL

Genome-Wide RNA Interference: Functional Genomics in the Postgenomics Era	1472
StarFire Probes	1478

CHAPTER 19

Expressing Cloned Genes for Protein Production, Purification, and Analysis	1481
--	------

Clara L. Kielkopf, William Bauer, and Ina L. Urbatsch

INTRODUCTION

Choosing an Expression System	1483
Choosing an Appropriate Expression Vector	1488
Fusion Proteins	1499
Optimization of Expression of Foreign Proteins	1503

PROTOCOLS

1 Expression of Cloned Genes in <i>E. coli</i> Using IPTG-Inducible Promoters	1508
• Additional Protocol: Small-Scale Test for Soluble Target Protein Expression	1514
• Alternative Protocol: Expression of Cloned Genes in <i>E. coli</i> Using the Arabinose BAD Promoter	1520
• Alternative Protocol: Subcellular Localization of Signal Peptide Fusion Proteins	1522

2	Expression of Cloned Genes Using the Baculovirus Expression System	1527
	• Additional Protocol: Plaque Assay to Determine the Titer of the Baculovirus Stock	1535
	• Alternative Protocol: Production of Bacmid DNA for Transfection into Insect Cells	1538
3	Expression of Cloned Genes in <i>P. pastoris</i> Using the Methanol-Inducible Promoter <i>AOX1</i>	1542
	• Additional Protocol: Cryostorage of Yeast Cultures	1553
4	Preparation of Cell Extract for Purification of Soluble Proteins Expressed in <i>E. coli</i>	1558
	• Additional Protocol: Lysis of Yeast Cells Using Glass Beads	1564
	• Alternative Protocol: Preparation of <i>E. coli</i> Cell Extract Using Gentle, Heat-Induced Enzymatic Lysis	1566
	• Alternative Protocol: Preparation of <i>E. coli</i> Cell Extract Using Freeze–Thaw with Enzymatic Lysis by Lysozyme	1568
5	Purification of Polyhistidine-Tagged Proteins by Immobilized Metal Affinity Chromatography	1571
	• Additional Protocol: Regenerating and Cleaning the Ni^{2+} –NTA Resin	1579
	• Alternative Protocol: Fast Performance Liquid Chromatography Purification of Histidine-Tagged Proteins	1581
6	Purification of Fusion Proteins by Affinity Chromatography on Glutathione Resin	1586
7	Solubilization of Expressed Proteins from Inclusion Bodies	1593
8	SDS-PAGE of Proteins	1599
	• Alternative Protocol: Variations of Staining SDS–Polyacrylamide Gels with Coomassie Brilliant Blue	1609
	• Alternative Protocol: Staining SDS–Polyacrylamide Gels with Silver Salts	1611
9	Analysis of Proteins by Immunoblotting	1616
10	Methods for Measuring the Concentrations of Proteins	1625
INFORMATION PANELS		
	Considerations for Membrane Protein Purification	1632
	Historical Footnote: Coomassie Brilliant Blue	1636

PART 5: INTERACTION ANALYSIS

CHAPTER 20

Cross-Linking Technologies for Analysis of Chromatin Structure and Function

Tae Hoon Kim and Job Dekker

1637

INTRODUCTION		
	Formaldehyde Cross-Linking to Interrogate Genomic Interactions	1638
	ChIP Analysis of Protein–DNA Interactions	1638
	3C-Based Chromatin Interaction Analyses	1641
PROTOCOLS		
1	Formaldehyde Cross-Linking	1649
2	Preparation of Cross-Linked Chromatin for ChIP	1652

3 ChIP	1655
4 ChIP–Quantitative PCR (ChIP-qPCR)	1659
5 ChIP-chip	1661
6 ChIP-seq	1669
7 Generation of 3C Libraries from Cross-Linked Cells	1674
8 Generation of ChIP-loop Libraries	1679
9 Generation of Control Ligation Product Libraries	1684
10 PCR Detection of 3C Ligation Products Present in 3C, ChIP-loop, and Control Libraries: Library Titration and Interaction Frequency Analysis	1687
11 4C Analysis of 3C, ChIP-loop, and Control Libraries	1692
12 5C Analysis of 3C, ChIP-loop, and Control Libraries	1696
 INFORMATION PANELS	
Formaldehyde	1701
What Is Captured by 3C-Based Assays?	1702

CHAPTER 21

Mapping of In Vivo RNA-Binding Sites by UV-Cross-Linking Immunoprecipitation (CLIP)

1703

Jennifer C. Darnell, Aldo Mele, Ka Ying Sharon Hung, and Robert B. Darnell

INTRODUCTION

The Cross-Linking Immunoprecipitation Method	1706
High-Throughput Sequencing (HITS) CLIP	1708
Validation of CLIP Results	1708
CLIP Method Variations	1709
General Considerations in Planning CLIP Experiments	1710

PROTOCOLS

1 Optimization of Immunoprecipitation Stringency for CLIP	1713
2 UV Cross-Linking of Live Cells and Lysate Preparation	1720
3 RNase Titration, Immunoprecipitation, and SDS-PAGE	1724
4 3'-Linker Ligation and Size Selection by SDS-PAGE	1734
• Alternative Protocol: 5'-End Labeling of Dephosphorylated RL3 Linker	1738
5 Isolation of the RNA Tags, 5'-Linker Ligation, and Reverse Transcription PCR Amplification	1741
6 Sequencing of RNA CLIP Tags	1751
7 Gel Purification and Storage of RNA Linkers	1753

INFORMATION PANELS

Mechanism and Specificity of UV-Protein Cross-Linking	1756
HITS-CLIP Data Analysis	1758

CHAPTER 22**Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays**

1761

*John S. Reece-Hoyes and Albertha J.M. Walhout***INTRODUCTION**

The Yeast Two-Hybrid (Y2H) System: Concept and Methodology	1763
The Yeast One-Hybrid (Y1H) System: Concept and Methodology	1767
Y2H and Y1H Assays: Advantages and Disadvantages	1768
False Positives	1769
Protocols for Yeast One-Hybrid and Two-Hybrid Systems	1770

PROTOCOLS

1 Generating Yeast One-Hybrid DNA-Bait Strains	1773
• Alternative Protocol: Creating Entry Clones from DNA-Baits Generated by Annealing Primers	1782
2 Generating Yeast Two-Hybrid Bait Strains	1785
3 Identifying Interactors from an Activation Domain Prey Library	1792
4 High-Efficiency Yeast Transformation	1799
5 Colony Lift Colorimetric Assay for β -Galactosidase Activity	1803
6 Yeast Colony PCR	1805

INFORMATION PANELS

Why Integrate DNA-Baits?	1808
Choosing a Vector and a Yeast Strain	1809
Replica-Plating and Replica-Cleaning Using Velvets	1810

APPENDICES**APPENDIX 1****Reagents and Buffers**

1811

RECIPES	1811
BUFFERS	1828
Tris Buffers	1828
Good Buffers	1829
Phosphate Buffers (Gomori Buffers)	1830
ACIDS AND BASES	1833
ORGANIC REAGENTS	1834
Phenol	1834
Equilibration of Phenol	1834
Phenol:Chloroform:Isoamyl Alcohol (25:24:1)	1834
Deionization of Formamide	1834