

Contents

Preface	xi
Acknowledgments	xiii
Abbreviations	xv
1 Introduction	1
1.1 Palms: Taxonomy and Uses	1
1.2 Genetics Cytology and Genomics of Palms	2
1.3 Molecular Phylogeny and Evolution	4
1.4 Marker-Trait Associations	4
1.5 Molecular Cloning and Transgenics	5
1.6 Cross-Transferrable Microsatellite Markers in Palms	6
1.7 Databases and Software	6
1.8 Constraints and Opportunities in Genomics of Palms	6
2 Coconut	13
2.1 Introduction	13
2.2 Markers for Assessment of Diversity	13
2.3 Marker-Trait Associations, QTL Mapping on Coconut	18
2.4 Genome Biology of Coconut Endosperm and Fatty Acid Biosynthesis	18
2.5 Coconut Tissue Culture-Related Genes	20
2.6 Structural Biology of Hirsutellin	22
2.7 Road Map for Coconut Genomics	22
3 Oil Palm	29
3.1 Introduction	29
3.2 Markers, QTLS, Omics of Mesocarp, and Shell Thickness	29
3.2.1 Markers and Genes for Shell Thickness	30
3.2.2 Omics of Oil Palm Mesocarp Biology	31
3.3 Transcriptomics and Genes of Somatic Embryogenesis and Mantled Disorder	32
3.4 Molecular Markers for QTL Mapping and Diversity Analysis in Oil Palm	33
3.5 Genes and Promoters of Oil Palm	38
3.6 Bioinformatics	38
3.7 Haplid Technologies	42
3.8 Road Map for Oil Palm Genomics	42

4 Date Palm	49
4.1 Introduction	49
4.2 Genetic Diversity using Molecular Markers	49
4.2.1 Amplified Fragment Length Polymorphism	49
4.2.2 RAPD, SSR, and ISSR Markers	49
4.3 Molecular Biology of Sex Determination	50
4.4 Resistance to Bayoud Disease	52
4.5 Probes for Brittle Leaf Disease	53
4.6 Somaclonal Variations, DNA Methylation, and Other Markers	53
4.7 Complete Genomes, SNPs, and Genomic Libraries	54
4.8 Proteomics	55
4.9 Road Map for Date Palm Genomics	55
5 Rattans and Palmyra	61
5.1 Introduction	61
5.2 Molecular Markers for Rattans	61
5.2.1 Molecular Phylogeny	61
5.2.2 Molecular Markers for Diversity in Rattans	62
5.2.3 Marker–Sex Association in Rattans	63
5.3 Molecular Markers for Diversity and Sex Association in Palmyra	63
6 Arecaut	67
6.1 Diversity of <i>Areca</i>	67
6.2 Molecular Phylogeny of <i>Areca</i>	67
6.3 Arecaut and Health Hazards	68
6.4 Biomarkers for Arecoline-Induced Damage	69
6.5 Xenobiosis, Metabolomics, and Pharmacogenomics	70
6.6 <i>Areca</i> Damage and Herbal Remedies	70
6.7 Road Map for <i>Areca</i> Genomics	71
7 Peach Palm	75
7.1 Introduction	75
7.2 Molecular Phylogeny of Bactridinae	75
7.3 Biochemical and Molecular Markers in Peach Palm	76
7.4 Polyphenol Oxidase, Carotenoids, and Antioxidants in Bactris	79
8 Ornamental, Underutilized, and Vulnerable Palms	81
8.1 Attalea, Butia, Carpentaria and Ceroxylon	81
8.2 Chamaedorea and Euterpe	81
8.3 Geonoma, Howea, Johannesteijsma, Livistona, Licuala, Lodoicea and Metroxylon	82
8.4 Nypa, Oenocarpus, Pinanga, and Pseudophoenix	85
8.5 Conclusions	87

9	Molecular Phylogeny of Palms	91
9.1	Introduction	91
9.2	Random Primers and DNA Barcodes	91
9.3	Markers for Palms from Other Monocot Plants	91
9.4	Slow Evolution in Palms	92
9.5	Sequence Variations Used in Molecular Phylogeny of Plants	92
9.6	Plastid Regions in Classification of Palms	93
9.7	Nuclear DNA Regions in Phylogeny of Palms	93
	About the Author	97