

C

Contents

SUMMARY	3
PRACTICE PROBLEMS	8
SUGGESTED READING	8

Preface

1

Cells: the Basic Units of Life

1.1 Properties of living cells	1
1.2 Cell structure	2
1.3 The elemental composition of cells	4
1.4 The chemicals found in cells: water, organic compounds, trace elements	5
SUMMARY	10
PRACTICE PROBLEMS	10
SUGGESTED READING	10

2

Protein Structure & Function

2.1 Proteins serve many biological functions	12
2.2 Amino acids are the building blocks of proteins	15
2.3 Each protein is a linear chain of amino acids held together by peptide bonds	22
2.4 Proteins have a preferred three-dimensional shape	27
2.5 Some proteins require metal ions or small organic molecules for biological activity	37
2.6 Destruction of the three-dimensional shape of a protein drastically alters its physical properties and reduces its ability to carry out its biological function	39
SUMMARY	42
PRACTICE PROBLEMS	43
SUGGESTED READING	44

3

Determining Protein Structure

3.1 The relationship between protein structure and function	45
3.2 Determining the complete structure of a protein involves four basic steps	46
3.3 To study the structure of a particular protein, that protein must be freed from all the other components of the cell	47
3.4 The amino acid composition of a protein is determined by breaking its peptide bonds and analyzing the resulting mixture of amino acids	50
3.5 Determining the linear sequence of the amino acids in a protein	54
3.6 The three-dimensional shape of a protein can be determined by x-ray crystallography	59
SUMMARY	60
PRACTICE PROBLEMS	60
SUGGESTED READING	62

4

Enzymes

4.1 A single enzyme molecule can be used over and over again to convert many molecules of substrate into product	64
4.2 Cells need enzymes to make reactions proceed at a fast rate	64
4.3 Each enzyme can catalyze only one type of metabolic reaction	65
4.4 Enzyme nomenclature	65
4.5 Enzymes promote chemical reactions by making them more energetically favorable	67
4.6 The catalytic ability of an enzyme depends on its three-dimensional shape	68
4.7 Enzyme assays	71
4.8 External factors affecting enzyme activity	72
4.9 Isoenzymes	75
4.10 Medical and industrial applications of enzymology	77
4.11 Enzyme activity is destroyed by inhibitors	80
4.12 Uses and misuses of enzyme inhibitors	81
SUMMARY	84
PRACTICE PROBLEMS	85
SUGGESTED READING	87

5

General Concepts in Metabolism

5.1 Every cellular reaction is one step in a metabolic pathway	89
5.2 Metabolic pathways are interconnected by branch-point compounds	90
5.3 Cells control metabolic reactions by regulating enzyme activity	93
5.4 Studying the metabolic maze	94
SUMMARY	98
PRACTICE PROBLEMS	98
SUGGESTED READING	100

6

Energy for Cell Work: the Role of ATP

6.1 ATP: the "middleman" between energy-releasing and energy-requiring processes	101
6.2 Energy-requiring processes: kinds of cell work	104
6.3 Muscle cells use ATP energy for mechanical work	106
6.4 Active transport: the $\text{Na}^+ - \text{K}^+$ pump	109
6.5 The magnitude of the cellular energy cycle	111
SUMMARY	113
PRACTICE PROBLEMS	113
SUGGESTED READING	114

7

The Production of Energy & Intermediates from Glucose

7.1 Glycolysis. I. The energy-using steps of glucose breakdown	118
7.2 Glycolysis. II. The release of useful energy	121
7.3 How much energy can we get from glycolysis?	124
7.4 The fate of pyruvic acid under anaerobic conditions	124
7.5 The fate of pyruvic acid under aerobic conditions	127
SUMMARY	128
PRACTICE PROBLEMS	128
SUGGESTED READING	129

8

Degradation of Carbohydrates: Energy & Intermediates from Krebs Cycle & Electron Transport

8.1 Acetyl CoA—Molecule at the crossroads	130
8.2 Reactions of the Krebs cycle	131
8.3 The flow of intermediates into and out of the Krebs cycle	136
8.4 Energy from the Krebs cycle: ATP is formed by oxidative phosphorylation	139

8.5 Energy from glucose: the balance sheet	142
8.6 Cytochrome <i>c</i> and evolution	142
SUMMARY	145
PRACTICE PROBLEMS	146
SUGGESTED READING	147

9

Carbohydrate Formation & Storage

How Cells Control Energy Supplies

9.1 Glucose is stored in polysaccharides	149
9.2 Monosaccharides and disaccharides	151
9.3 Gluconeogenesis: how glucose is made from noncarbohydrate precursors	153
9.4 Insulin and the control of sugar transport into cells	154
9.5 Glucagon and epinephrine control glycogen breakdown	155
9.6 Photosynthesis: the synthesis of carbohydrates using solar energy	157
9.7 From plants to animals	160
SUMMARY	160
PRACTICE PROBLEMS	161
SUGGESTED READING	162

10

Lipids

10.1 The major lipids: fatty acids, glycerides, and sterols	164
10.2 Lipid metabolism in the whole animal	167
10.3 Fatty acids start and end as acetyl CoA	168
10.4 Cholesterol: from acetyl CoA to gallstones	172
10.5 Membranes and lipoproteins: structure and function	174
10.6 Many other lipids play specialized physiological roles	177
10.7 Lipids, diet, and heart disease	182
SUMMARY	183
PRACTICE PROBLEMS	184
SUGGESTED READING	185
SUGGESTED READING	284

11**The Metabolism of Amino Acids & Other Nitrogen Compounds**

11.1 The nitrogen cycle	187
11.2 Cells need a basic set of amino acids	189
11.3 The synthesis of nonessential amino acids from glycolytic and Krebs cycle intermediates and ammonia	192
11.4 The degradation of amino acids feeds the Krebs and urea cycles	194
11.5 Nitrogen enters most other biological compounds from amino acids	197
11.6 The aromatic amino acids are important intermediates in human metabolism	200
11.7 Purine and pyrimidine nucleotides	202
11.8 The biosynthesis of purine and pyrimidine nucleotides	203
11.9 The breakdown and excretion of purines and pyrimidines	207
SUMMARY	208
PRACTICE PROBLEMS	209
SUGGESTED READING	210

12**Deoxyribonucleic Acid: the Genetic Material**

PRACTICE PROBLEMS	
12.1 The structure of DNA: single strands and the double helix	211
12.2 The DNA of higher organisms is organized into chromosomes	214
12.3 Semiconservative replication of DNA depends on Watson-Crick base pairing	220
12.4 The many enzymes of DNA replication, repair, and recombination	221
12.5 DNA replication in bacteria	224
12.6 Biochemistry meets genetics	226
12.7 Evidence that DNA is the genetic material	227
12.8 Genes code for proteins	228
12.9 The genetic code: a sequence of three bases signifies one amino acid	231
12.10 A look at an inherited metabolic disorder: sickle-cell anemia	233
SUMMARY	236
PRACTICE PROBLEMS	237
SUGGESTED READING	239

13

Protein Synthesis: the Translation of Genetic Information into Protein Requires RNA

A. RIBONUCLEIC ACIDS, MOLECULES OF MANY USES	241
13.1 The chemical composition and structure of RNA	242
13.2 The three-dimensional structure of RNA	245
13.3 Transcription: the synthesis of RNA on a DNA template	248
B. HOW PROTEINS ARE MADE—	
THE TRANSLATION SYSTEM IN CELLS	252
13.4 An overview	252
13.5 Messenger RNA and the genetic code	252
13.6 Transfer RNA—the adapter molecule	254
13.7 The ribosomes—where the action is	255
13.8 Factors and their roles in protein synthesis	257
13.9 Getting it all together—the stages of protein synthesis	257
SUMMARY	260
PRACTICE PROBLEMS	261
SUGGESTED READING	263

14

Regulation & Control: How Cells Turn

Metabolic Reactions On & Off

14.1 Regulation at the level of transcription	SUMMARY 266
14.2 Regulation at the level of translation: turning protein synthesis on and off	271
14.3 Post-translational control: the regulation of enzyme activity	272
14.4 Gene amplification: more genes mean more gene products	274
14.5 Hormones—chemical coordinators synchronize your cells	275
14.6 The mode of action of thyroid hormones	280
14.7 Pheromones	281
14.8 Compartmental regulation	281
SUMMARY	282
PRACTICE PROBLEMS	282
SUGGESTED READING	284

15

Viruses: Cell's Natural Enemies

15.1 Viral structure	286
15.2 The life cycle of viruses: lysis versus lysogeny	287
15.3 Viruses and cancer	293
15.4 Copying the viral genome	294
15.5 Why we cannot cure viral infections	296
15.6 Viroids—science fiction in real life	298
SUMMARY	299
PRACTICE PROBLEMS	299
SUGGESTED READING	300

16

Antimicrobial Agents

16.1 What are antibiotics?	303
16.2 Why are antibiotics effective?	304
16.3 Antibiotics that inhibit bacterial cell wall synthesis	305
16.4 Antibiotics that inhibit bacterial protein synthesis	306
16.5 Antibiotics that inhibit bacterial RNA synthesis	307
16.6 Antimetabolites	308
16.7 Bacterial resistance to antibiotics: bacteria fight back	309
SUMMARY	310
PRACTICE PROBLEMS	311
SUGGESTED READING	312

Appendix:
Important Concepts
in Organic Chemistry

A.1 Covalent bonding	313
A.2 The shapes of organic compounds	314
A.3 The functional groups in organic compounds are responsible for their chemical reactivity	316
A.4 Oxidation-reduction reactions	322
TEXTBOOK REFERENCES	324
Index	326

This text is designed to introduce the principles of biochemistry and their applications to undergraduate students who desire a basic knowledge of biochemistry. The text is aimed at students in nursing, nutrition, agriculture, and other sciences for which a survey course in biochemistry is sufficient. However, we believe that students in fields other than science can and should comprehend this material.

The book is based on lectures given in an introductory biochemistry course at the University of Wisconsin. In working with the undergraduates in this course, we have found that many students view biochemistry as an "ivory-tower" science which bears little or no relationship to everyday life, and that they cannot visualize how the material presented will ever be useful to them. In the hope of stifling the "Why are we learning this stuff?" refrain, we have emphasized the fact that biochemical principles underlie many common phenomena. For example, we include information about the enzymatic basis of inherited disease, drug therapy when it involves enzyme inhibition, and the biochemical basis of wine making, pickling, and other food preparation. We have tried to include explanations of topics currently being discussed in popular periodicals and newspapers.

Our experience has indicated that the beginning student often reacts negatively to biochemistry because the courses consist of the memorization of countless chemical formulas and the minute details of metabolic pathways. We believe this to be an inappropriate and stifling approach to the subject. In writing this text, we started