

Contents

Preface ix

Acknowledgments xiii

Acronyms and abbreviations xiv

1	Introduction	1
1.1	A new synthesis	1
1.2	The Golden Age, resolution, revolution and paradox: an up-to-date empirical tour of atmospheric variability	4
1.3	The phenomenological fallacy	18
2	Classical turbulence, modern evidence	21
2.1	Complexity or simplicity? Richardson's dreams and the emergence of the laws of turbulence	21
2.2	The equations of the atmosphere and their scale symmetries	25
2.3	Extensions to passive scalars, to the atmospheric primitive equations	28
2.4	Classical isotropic 3D turbulence phenomenology: Kolmogorov turbulence and energy cascades	31
2.5	The special case of 2D turbulence	36
2.6	Atmospheric extensions	37
2.7	Summary of emergent laws in Chapter 2	51
	Appendix 2A: Spectral analysis in arbitrary dimensions	53
	Appendix 2B: Cascade phenomenology and spectral analysis	55
	Appendix 2C: Spectral transfers	58
3	Scale-by-scale simplicity: an introduction to multiplicative cascades	59
3.1	Cascades as conceptual models	59
3.2	Discrete-in-scale multiplicative cascades	61
3.3	Universal multifractal processes	76
4	3.4 Summary of emergent laws in Chapter 3	81
	Appendix 3A: The convexity of $K(q)$	82
4	Empirical analysis of cascades in the horizontal	83
4.1	The empirical estimation of turbulent fluxes in both dissipation and scaling ranges	83
4.2	The scaling properties of reanalyses	86
4.3	The cascade structure of in-situ aircraft measurements: wind, temperature and humidity fields	96
4.4	The cascade structure of precipitation	100
4.5	The scaling of atmospheric forcings and boundary conditions	106
4.6	Summary of emergent laws in Chapter 4	109
	Appendix 4A: Trace moments of quasi-Gaussian processes	111
5	Cascades, dimensions and codimensions	113
5.1	Multifractals and the codimension function	113
5.2	The codimension multifractal formalism	115
5.3	Divergence of statistical moments and extremes	125
5.4	Continuous-in-scale multifractal modelling	141
5.5	Wavelets and fluctuations: structure functions and other data analysis techniques	150
5.6	Summary of emergent laws in Chapter 5	162

Appendix 5A: Divergence of high-order statistical moments	165	7.3 Spatially varying anisotropies, morphologies: some elements of nonlinear GSI	262
Appendix 5B: Continuous-in-scale cascades: the autocorrelation and finite size effects	167	7.4 Summary of emergent laws in Chapter 7	269
Appendix 5C: A Mathematica code for causal and acausal multifractal simulations	172	Appendix 7A: The normalization constant in anisotropic continuous-in-scale multifractal simulations	271
Appendix 5D: Multifractal simulations on a sphere	174	8 Space-time cascades and the emergent laws of the weather	274
Appendix 5E: Tendency, poor man's and Haar structure functions and the MFDFA technique	175	8.1 Basic considerations and empirical evidence	274
6 Vertical stratification and anisotropic scaling	183	8.2 Anisotropic space-time turbulence	300
6.1 Models of vertical stratification: local, trivial and scaling anisotropy	183	8.3 Global space-time scaling in Fourier space	304
6.2 The Brunt–Väisälä frequency and the classical stable layer approach to stratification	197	8.4 Space-time relations	308
6.3 The implications of anisotropic scaling for aircraft turbulence measurements	201	8.5 Summary of emergent laws in Chapter 8	312
6.4 Horizontal and vertical analyses of dynamic and thermodynamic variables	204	Appendix 8A: The effect of the vertical wind on the temporal statistics	313
6.5 Direct verification of anisotropic cascades using lidar backscatter of aerosols and CloudSat radar reflectivities	211	9 Causal space-time cascades: the emergent laws of waves, and predictability and forecasting	314
6.6 Zonal/meridional anisotropy in reanalyses	217	9.1 Causality	314
6.7 Summary of emergent laws in Chapter 6	223	9.2 The emergent laws of turbulence-generated waves	318
Appendix 6A: Revisiting the revised EOLE experiment: the effect of temporal averaging	225	9.3 Predictability/forecasting	329
Appendix 6B: Cross-spectral analysis between wind, altitude and pressure	227	9.4 Summary of emergent laws in Chapter 9	335
7 Generalized scale invariance and cloud morphology	229	10 The emergent laws of macroweather and the transition to the climate	337
7.1 Beyond self-similarity and self-affinity	229	10.1 What is the climate?	337
7.2 GSI data analysis	255	10.2 Macroweather: its temporal variability, and outer-limit τ_c	350
		10.3 Spatial variability in macroweather and climatic zones	356
		10.4 Summary of emergent laws in Chapter 10	363
		Appendix 10A: The dimensional transition asymptotic scaling of cascades in the macroweather regime	366

Appendix 10B: Stochastic linear forcing paradigm versus the fractionally integrated flux model 371	11.3 Climate forcings and global climate models 411
Appendix 10C: A comparison of monthly surface temperature series 374	11.4 The atmosphere in a nutshell: a summary of emergent laws in Chapter 11 424
<hr/>	
Appendix 10D: Coupled ocean-atmosphere modelling 378	<i>References</i> 427
11 The climate 383	<i>Index</i> 454
11.1 Multidecadal to multimillennial scaling: instruments and multiproxies 383	<i>Colour plate section appears between pages 336 and 337.</i>
11.2 Scaling up to 100 kyr: a composite overall scaling picture of atmospheric variability 396	