

CONTENTS

CHAPTER ONE CHANGES

BASIC FLUID MECHANICS AND THERMODYNAMICS

1.1 INDICIAL NOTATION	2
1.2 CONTINUUM MODEL	6
1.3 MACROSCOPIC THERMODYNAMICS	7
First Law	8
Specific Heats	9
Second Law	10
Maxwell Relations	10
Fluids in Motion	13
1.4 CONSERVATION OF MASS	14
1.5 EQUATION OF MOTION	16
Stress Tensor	20
Navier-Stokes Equation	26
1.6 THE ENERGY EQUATION	27
Second Law for a Continuum	30
1.7 COMPLETE SYSTEM OF EQUATIONS	31

CHAPTER TWO

BASIC PROPERTIES OF ACOUSTIC WAVES

2.1 IDEAL FLUIDS	33
2.2 LINEARIZATION	35
2.3 UNIFORM FLUIDS	38

2.4	ONE-DIMENSIONAL PLANE WAVES	40
	Speed of Sound in a Perfect Gas	43
	Speed of Sound in Other Fluids	45
	Relationships between Acoustic Quantities	47
2.5	MONOCHROMATIC WAVES	51
	Plane, One-Dimensional Monochromatic Waves	52
	Plane, Monochromatic Waves in Three Dimensions	54
	Relation between Variables in a Monochromatic Wave	55
	Time Averages	56
2.6	FOURIER ANALYSIS	58
	Periodic Waveforms—Fourier Series	58
	Nonperiodic Functions—Fourier Transform	64
2.7	ACOUSTIC ENERGY	68
	Energy Density	71
	Acoustic Intensity	73
	Reference Levels	74

CHAPTER THREE

REFLECTION AND TRANSMISSION PHENOMENA

3.1	NORMAL INCIDENCE	77
	Reflection at a Rigid Surface	77
	Reflection at the Interface between Two Media	80
	Acoustic Impedance at a Boundary	84
	Acoustical Elements having Complex Impedances	88
	Helmholtz Resonators	90
	Electrical Analogies	93
3.2	CHARACTERISTIC WAVES	97
	Linearized Shock Tube	100
3.3	TRANSMISSION THROUGH A WALL	103
3.4	OBLIQUE INCIDENCE	111
	Field in Front of a Rigid Reflector	118
	Dispersion	121
3.5	PROPAGATION IN A TWO-DIMENSIONAL CHANNEL	123
	Excitation of Transverse Modes	127

3.6	ACOUSTIC FIELD IN A PISTON-DRIVEN TUBE	130
	Experimental Determination of α	136
	Amplitude Growth at Resonance	144
3.7	SOME NONLINEAR EFFECTS	148
	Distortion of a Progressive Wave	148
	Entropy Changes	157
	Attenuation of a Sawtooth Wave	161
3.8	PLANE WAVES IN TUBES OF VARYING CROSS SECTION	164
	Exponential Horn	166
	Power-Law Horns	168
	Other Shapes	171
	Transmission Coefficient	171
3.9	SUDDEN AREA CHANGES	177
	Tubes with Fluids Having Different Properties	180
	Transmission into Several Branches	181
3.10	TUBE WITH TEMPERATURE GRADIENT	190
CHAPTER FOUR		
SPHERICAL AND CYLINDRICAL WAVES		199
4.1	CENTRALLY SYMMETRIC WAVES	199
	Monochromatic Case	203
	Standing Waves in a Spherical Cavity	205
4.2	PROBLEMS WITH SPHERICAL SYMMETRY	207
	Radially Pulsating Sphere	207
	Initial-Value Problem	216
4.3	AXIALLY SYMMETRIC SPHERICAL WAVES	224
	Standing Waves in a Spherical Cavity	226
	Rigid Sphere in a Sound Wave	228
	Scattering by a Sphere	237
	Arbitrary Spherical Waves	244
4.4	CIRCULARLY CYLINDRICAL WAVES	247
	Monochromatic Waves	248
	Waves inside Circular Tubes	250
4.5	NONMONOCHROMATIC CYLINDRICAL WAVES	261

CHAPTER FIVE

SOUND EMISSION

269

5.1	RADIATION FROM A PULSATING SPHERE	269
	Forces on the Pulsating Sphere	271
	Pulsating Bubble	275
	Simple Source	277
5.2	INHOMOGENEOUS WAVE EQUATION	279
	Linear Array	284
	Continuous Distributions	285
5.3	EMISSION FROM A PISTON IN AN INFINITE WALL	294
	Axial Pressure	298
	Forces on the Piston	301
	Applications to Helmholtz Resonators	306
5.4	COMPACT DISTRIBUTIONS OF SOURCES	308
5.5	OSCILLATING SPHERE	310
	Force on the Sphere	317
5.6	RADIATION FROM FLUCTUATING FORCES	319
	Point-Force Distribution	320
	Simple-Point Forces	321
	Arbitrary Time Dependence	323
5.7	ACOUSTIC DIPOLES	326
	Line Distribution	328
5.8	FAR-FIELD OF COMPACT FORCE DISTRIBUTION	333
5.9	ACOUSTIC QUADRUPOLES	344
5.10	SOUND EMISSION BY HEAT RELEASE	348
5.11	INTEGRAL FORMULATION FOR RADIATION	354
	Surface Integral Representation	356
	Radiation Condition	359
	Pulsating Sphere	359
	Reduction to a Single Integral	362
	Reciprocity	363

CHAPTER SIX

SOUND ABSORPTION

367

6.1	LINEARIZED DISSIPATIVE EQUATIONS	367
	Physical Considerations	369

6.2 ATTENUATION DUE TO VISCOSITY EFFECTS	372
Translational Relaxation Time	379
6.3 ATTENUATION IN VISCOS, HEAT-CONDUCTING FLUID	389
Comparison with Experimental Data	388
Effects of Impurities	393
6.4 ENERGY-DISSIPATION METHOD	396
Unbounded Waves	399
6.5 EFFECTS OF BOUNDARIES	401
Flow Induced by an Oscillating Plane	402
Thermal Waves	406
6.6 ATTENUATION IN TUBES	410
Comparison with Experimental Data	417
6.7 BOUNDARY EFFECTS: VECTOR FORMULATION	421
6.8 PROPAGATION IN A TWO-DIMENSIONAL CHANNEL	425
Wide-Tube, Low-Frequency Approximation	429
Narrow-Tube, Low-Frequency Approximation	432
6.9 SPHERE OSCILLATING IN VISCOS FLUID	434
Force on the Sphere	441
6.10 SPHERE IN A SOUND WAVE	445
6.11 ATTENUATION AND DISPERSION IN A DILUTE SUSPENSION	455
Attenuation	456
Dispersion	459
Measurements of Particle Size	464
6.12 BOUNDARY VISCOS AND THERMAL EFFECTS	465
6.13 WAVES EMITTED BY PLANE HEATER	470
Energy Considerations	473
BIBLIOGRAPHY	478
General Books	478
Specialized Books	480
Review and Research Articles	481

APPENDIXES

A: USEFUL FORMULAS FROM VECTOR ANALYSIS	490
B: EXPLICIT EXPRESSIONS FOR SOME VECTOR AND TENSOR QUANTITIES IN SPECIAL COORDINATE SYSTEMS	492
C: SOME PROPERTIES OF THE BESSEL FUNCTIONS	498
D: SOME PROPERTIES OF THE SPHERICAL BESSEL FUNCTIONS	501
E: LEGENDRE POLYNOMIALS	505
INDEX	507

INDEX