

Contents

Preface	xi
Preface to the Third Edition	xiii
Preface to the Second Edition	xv
Preface to the First Edition	xvii
Introduction	xxi

PART I FUNDAMENTALS 1

1 Solar Radiation 3

1.1	The Sun	3
1.2	The Solar Constant	5
1.3	Spectral Distribution of Extraterrestrial Radiation	6
1.4	Variation of Extraterrestrial Radiation	8
1.5	Definitions	9
1.6	Direction of Beam Radiation	12
1.7	Angles for Tracking Surfaces	20
1.8	Ratio of Beam Radiation on Tilted Surface to That on Horizontal Surface	23
1.9	Shading	29
1.10	Extraterrestrial Radiation on a Horizontal Surface	37
1.11	Summary	41
	References	41

2 Available Solar Radiation 43

2.1	Definitions	43
2.2	Pyrheliometers and Pyrheliometric Scales	44
2.3	Pyranometers	48
2.4	Measurement of Duration of Sunshine	53
2.5	Solar Radiation Data	54
2.6	Atmospheric Attenuation of Solar Radiation	59
2.7	Estimation of Average Solar Radiation	64
2.8	Estimation of Clear-Sky Radiation	68
2.9	Distribution of Clear and Cloudy Days and Hours	71
2.10	Beam and Diffuse Components of Hourly Radiation	74
2.11	Beam and Diffuse Components of Daily Radiation	77

2.12	Beam and Diffuse Components of Monthly Radiation	79
2.13	Estimation of Hourly Radiation from Daily Data	81
2.14	Radiation on Sloped Surfaces	84
2.15	Radiation on Sloped Surfaces: Isotropic Sky	89
2.16	Radiation on Sloped Surfaces: Anisotropic Sky	91
2.17	Radiation Augmentation	97
2.18	Beam Radiation on Moving Surfaces	101
2.19	Average Radiation on Sloped Surfaces: Isotropic Sky	103
2.20	Average Radiation on Sloped Surfaces: KT Method	107
2.21	Effects of Receiving Surface Orientation on \bar{H}_T	112
2.22	Utilizability	115
2.23	Generalized Utilizability	118
2.24	Daily Utilizability	126
2.25	Summary	132
	References	133

3 Selected Heat Transfer Topics 138

3.1	The Electromagnetic Spectrum	138
3.2	Photon Radiation	139
3.3	The Blackbody: Perfect Absorber and Emitter	139
3.4	Planck's Law and Wien's Displacement Law	140
3.5	Stefan-Boltzmann Equation	141
3.6	Radiation Tables	142
3.7	Radiation Intensity and Flux	144
3.8	Infrared Radiation Exchange between Gray Surfaces	146
3.9	Sky Radiation	147
3.10	Radiation Heat Transfer Coefficient	148
3.11	Natural Convection between Flat Parallel Plates and between Concentric Cylinders	149
3.12	Convection Suppression	154
3.13	Vee-Corrugated Enclosures	158
3.14	Heat Transfer Relations for Internal Flow	159

3.15	Wind Convection Coefficients	163
3.16	Heat Transfer and Pressure Drop in Packed Beds and Perforated Plates	165
3.17	Effectiveness-NTU Calculations for Heat Exchangers	168
	References	170

4 Radiation Characteristics of Opaque Materials 173

4.1	Absorptance and Emittance	174
4.2	Kirchhoff's Law	176
4.3	Reflectance of Surfaces	177
4.4	Relationships among Absorptance, Emittance, and Reflectance	181
4.5	Broadband Emittance and Absorptance	182
4.6	Calculation of Emittance and Absorptance	183
4.7	Measurement of Surface Radiation Properties	186
4.8	Selective Surfaces	188
4.9	Mechanisms of Selectivity	192
4.10	Optimum Properties	195
4.11	Angular Dependence of Solar Absorptance	196
4.12	Absorptance of Cavity Receivers	197
4.13	Specularly Reflecting Surfaces	198
	References	199

5 Radiation Transmission through Glazing: Absorbed Radiation 202

5.1	Reflection of Radiation	202
5.2	Absorption by Glazing	206
5.3	Optical Properties of Cover Systems	206
5.4	Transmittance for Diffuse Radiation	211
5.5	Transmittance-Absorptance Product	213
5.6	Angular Dependence of $(\tau\alpha)$	214
5.7	Spectral Dependence of Transmittance	215
5.8	Effects of Surface Layers on Transmittance	218
5.9	Absorbed Solar Radiation	219
5.10	Monthly Average Absorbed Radiation	223
5.11	Absorptance of Rooms	229
5.12	Absorptance of Photovoltaic Cells	231
5.13	Summary	234
	References	234

6 Flat-Plate Collectors 236

6.1	Description of Flat-Plate Collectors	236
6.2	Basic Flat-Plate Energy Balance Equation	237
6.3	Temperature Distributions in Flat-Plate Collectors	238
6.4	Collector Overall Heat Loss Coefficient	240
6.5	Temperature Distribution between Tubes and the Collector Efficiency Factor	254
6.6	Temperature Distribution in Flow Direction	261
6.7	Collector Heat Removal Factor and Flow Factor	262
6.8	Critical Radiation Level	266
6.9	Mean Fluid and Plate Temperatures	267
6.10	Effective Transmittance-Absorptance Product	268
6.11	Effects of Dust and Shading	271
6.12	Heat Capacity Effects in Flat-Plate Collectors	272
6.13	Liquid Heater Plate Geometries	275
6.14	Air Heaters	280
6.15	Measurements of Collector Performance	287
6.16	Collector Characterizations	288
6.17	Collector Tests: Efficiency, Incidence Angle Modifier, and Time Constant	289
6.18	Test Data	299
6.19	Thermal Test Data Conversion	302
6.20	Flow Rate Corrections to $F_R(\tau\alpha)_n$ and $F_R U_L$	305
6.21	Flow Distribution in Collectors	308
6.22	In Situ Collector Performance	309
6.23	Practical Considerations for Flat-Plate Collectors	310
6.24	Putting it all Together	313
6.25	Summary	318
	References	319

7 Concentrating Collectors 322

7.1	Collector Configurations	323
7.2	Concentration Ratio	325
7.3	Thermal Performance of Concentrating Collectors	327
7.4	Optical Performance of Concentrating Collectors	334
7.5	Cylindrical Absorber Arrays	335
7.6	Optical Characteristics of Nonimaging Concentrators	337

12.12	Swimming Pool Heating	502	15.7	Solar Desiccant Cooling	592
12.13	Summary	503	15.8	Ventilation and Recirculation Desiccant Cycles	594
	References	503	15.9	Solar-Mechanical Cooling	596
13	Building Heating: Active	505	15.10	Solar-Related Air Conditioning	599
13.1	Historical Notes	506	15.11	Passive Cooling	601
13.2	Solar Heating Systems	507		References	601
13.3	CSU House III Flat-Plate Liquid System	511	16	Solar Industrial Process Heat	604
13.4	CSU House II Air System	513	16.1	Integration with Industrial Processes	604
13.5	Heating System Parametric Study	517	16.2	Mechanical Design Considerations	605
13.6	Solar Energy-Heat Pump Systems	521	16.3	Economics of Industrial Process Heat	606
13.7	Phase Change Storage Systems	527	16.4	Open-Circuit Air Heating Applications	607
13.8	Seasonal Entergy Storage Systems	530	16.5	Recirculating Air System Applications	611
13.9	Solar and Off-Peak Electric Systems	533	16.6	Once-Through Industrial Water Heating	613
13.10	Solar System Overheating	535	16.7	Recirculating Industrial Water Heating	615
13.11	Solar Heating Economics	536	16.8	Shallow-Pond Water Heaters	617
13.12	Architectural Considerations	539	16.9	Summary	619
	References	541		References	619
14	Building Heating: Passive and Hybrid Methods	544	17	Solar Thermal Power Systems	621
14.1	Concepts of Passive Heating	545	17.1	Thermal Conversion Systems	621
14.2	Comfort Criteria and Heating Loads	546	17.2	Gila Bend Pumping System	622
14.3	Movable Insulation and Controls	546	17.3	Luz Systems	624
14.4	Shading: Overhangs and Wingwalls	547	17.4	Central-Receiver Systems	628
14.5	Direct-Gain Systems	552	17.5	Solar One and Solar Two Power Plants	630
14.6	Collector-Storage Walls and Roofs	557		References	633
14.7	Sunspaces	561	18	Solar Ponds: Evaporative Processes	635
14.8	Active Collection-Passive Storage Hybrid Systems	563	18.1	Salt-Gradient Solar Ponds	635
14.9	Other Hybrid Systems	565	18.2	Pond Theory	637
14.10	Passive Applications	565	18.3	Applications of Ponds	639
14.11	Heat Distribution in Passive Buildings	571	18.4	Solar Distillation	640
14.12	Costs and Economics of Passive Heating	571	18.5	Evaporation	646
	References	573	18.6	Direct Solar Drying	647
15	Solar Cooling	575	18.7	Summary	647
15.1	Solar Absorption Cooling	576		References	648
15.2	Theory of Absorption Cooling	578	PART III DESIGN METHODS	651	
15.3	Combined Solar Heating and Cooling	584	19	Simulations in Solar Process Design	653
15.4	Simulation Study of Solar Air Conditioning	585	19.1	Simulation Programs	653
15.5	Operating Experience with Solar Cooling	589	19.2	Utility of Simulations	654
15.6	Applications of Solar Absorption Air Conditioning	591			

19.3	Information from Simulations	655	23	Design of Photovoltaic Systems	745
19.4	TRNSYS: Thermal Process Simulation Program	656	23.1	Photovoltaic Converters	746
19.5	Simulations and Experiments	663	23.2	PV Generator Characteristics and Models	747
19.6	Meteorological Data	663	23.3	Cell Temperature	757
19.7	Limitations of Simulations	666	23.4	Load Characteristics and Direct-Coupled Systems	759
	References	667	23.5	Controls and Maximum Power Point Trackers	763
20	Design of Active Systems: <i>f</i>-Chart	668	23.6	Applications	764
20.1	Review of Design Methods	668	23.7	Design Procedures	765
20.2	The <i>f</i> -Chart Method	669	23.8	High-Flux PV Generators	770
20.3	The <i>f</i> -Chart for Liquid Systems	673	23.9	Summary	771
20.4	The <i>f</i> -Chart for Air Systems	679		References	771
20.5	Service Water Heating Systems	683			
20.6	The <i>f</i> -Chart Results	685	24	Wind Energy	774
20.7	Parallel Solar Energy-Heat Pump Systems	686	24.1	Introduction	774
20.8	Summary	690	24.2	Wind Resource	778
	References	690	24.3	One-Dimensional Wind Turbine Model	786
21	Design of Active Systems by Utilizability Methods	692	24.4	Estimating Wind Turbine Average Power and Energy Production	791
21.1	Hourly Utilizability	693	24.5	Summary	796
21.2	Daily Utilizability	696		References	796
21.3	The $\bar{\phi}$, <i>f</i> -Chart Method	699			
21.4	Summary	709	APPENDIXES	797	
	References	710			
22	Design of Passive and Hybrid Heating Systems	711	A	Problems	797
22.1	Approaches to Passive Design	711	B	Nomenclature	856
22.2	Solar-Load Ratio Method	712	C	International System of Units	861
22.3	Unutilizability Design Method: Direct Gain	721	D	Meteorological Data	863
22.4	Unutilizability Design Method: Collector-Storage Walls	727	E	Average Shading Factors for Overhangs	870
22.5	Hybrid Systems: Active Collection with Passive Storage	736			
22.6	Other Hybrid Systems	742			
	References	743	Index	887	