

Contents

PART 1 RACEMATES AND THEIR ENANTIOMER CONSTITUENTS

1	Types of Crystalline Racemates	3
1.1	Definitions, 3	
1.2	The Crystallization of Racemates and Enantiomers, 5	
1.2.1	Chirality and Packing Modes in Crystals, 7	
1.2.2	Preferred Space Groups for Crystalline Enantiomers and Racemic Compounds, 8	
1.2.3	Enantiomorphous Crystals Derived from Achiral Molecules and from Racemic Compounds, 14	
1.2.4	Characterization of Enantiomorphous and Achiral Crystals by Physical Methods, 18	
1.3	Relationships Between Arrays of Enantiomers and the Corresponding Racemic Compound in Crystals, 23	
1.3.1	Comparison of Crystal Structures of Enantiomers and of the Racemic Compound, 23	
1.3.2	Symmetry, Compactness, and Stability: Racemic Compound Versus Conglomerate, 28	
2	Binary Mixtures of Enantiomers	32
2.1	Characterization of Racemate Types by Means of Binary (Melting Point) Phase Diagrams, 32	
2.1.1	Representation of Melting Point Phase Diagrams, 33	
2.1.2	Preparation of Mixtures for the Construction of Binary Phase Diagrams, 35	
2.1.3	Visual Measurement of Transition Temperatures, 36	
2.1.4	Automated Procedures, 37	
2.1.5	The Contact Method of Kofler, 40	

2.2 *Conglomerates*, 43

- 2.2.1 *The Phase Rule*, 43
- 2.2.2 *Analysis of the Binary Phase Diagram*, 44
- 2.2.3 *The Equation of Schröder–Van Laar*, 46
- 2.2.4 *The Ideality of Enantiomer Mixtures in the Liquid State*, 47
- 2.2.5 *Inventory of Enantiomer Mixtures That Exist as Conglomerates*, 53

2.3 *Racemic Compounds*, 88

- 2.3.1 *Phase Diagrams*, 88
- 2.3.2 *Thermodynamic Aspects*, 90
- 2.3.3 *Comparison of Enthalpies of Fusion and Specific Heats of Racemic Compounds with Those of the Crystalline Enantiomers*, 93
- 2.3.4 *The Problem of Racemic Compound Stability*, 93
- 2.3.5 *Quasi-Racemates*, 100

2.4 *Pseudoracemates. Solid Solutions of Enantiomers*, 104

- 2.4.1 *Ideal Solid Solutions*, 105
- 2.4.2 *Nonideal Solid Solutions of Enantiomers. Pseudoracemates with Minimum Melting Point*, 110
- 2.4.3 *Nonideal Solid Solutions of Enantiomers. Pseudoracemates with Minimum Melting Point*, 112
- 2.4.4 *Thermodynamic Properties*, 113
- 2.4.5 *Thermodynamic Aspects. A Priori Calculation of Pseudoracemate Phase Diagrams*, 119
- 2.4.6 *Pseudoracemy and Its Relationship to Isomorphism*, 120
- 2.4.7 *Crystalline Forms of Enantiomers That Cocrystallize*, 123
- 2.4.8 *Partial Miscibility*, 126
- 2.4.9 *Quantitative Definition of Similarity, The Coefficient of Isomorphism*, 128

2.5 *Polymorphism in Binary Systems*, 131

- 2.5.1 *Enantiotropy and Monotropy. Transition Temperature*, 131
- 2.5.2 *Polymorphism Without Alteration of the Nature of the Racemate*, 136
- 2.5.3 *Polymorphism with Alteration to the Nature of the Racemate*, 137

2.5.4	<i>The Racemic Compound \rightleftharpoons Conglomerate Transformation, 140</i>	2.5
2.5.5	<i>Polymorphism of Chiral Mesomorphs, 144</i>	
2.6	<i>Anomalous Racemates, 147</i>	
2.7	<i>Calorimetric Determination of Enantiomeric Purity, 151</i>	
2.7.1	<i>Principles and Limitations of the Direct Method, 151</i>	2.7.1
2.7.2	<i>Theory of the Indirect Method, 153</i>	
2.7.3	<i>Application of the Indirect Method, 156</i>	
2.8	<i>Solid-Vapor Equilibria. Sublimation of Enantiomer Mixtures, 159</i>	
2.8.1	<i>Phase Diagrams for Sublimation, 159</i>	2.8.1
2.8.2	<i>Separation of Enantiomers by Sublimation, 162</i>	
2.9	<i>Liquid-Vapor Equilibria. Distillation of Enantiomer Mixtures, 165</i>	
3.	<i>Solution Properties of Enantiomers and Their Mixtures</i>	167
3.1	<i>Graphic Representation of Ternary Systems, 167</i>	
3.1.1	<i>Quantitative Definitions of Concentration and Solubility, 167</i>	3.1.1
3.1.2	<i>Representation of Ternary Systems. Generalizations, 168</i>	
3.1.3	<i>Triangular Phase Diagrams, 169</i>	
3.1.4	<i>The Enlargement of Triangular Phase Diagrams, 172</i>	
3.1.5	<i>Other Representations of Solubility Diagrams, 173</i>	
3.1.6	<i>Construction of Solubility Diagrams, 175</i>	
3.2	<i>Solutions of Conglomerates, 178</i>	
3.2.1	<i>Theoretical Phase Diagrams and Experimental Properties, 178</i>	3.2.1
3.2.2	<i>Solubility Rules for Partially Resolved Mixtures, 181</i>	
3.2.3	<i>Comparison of the Solubilities of Pure Enantiomers and Their Conglomerate, 182</i>	
3.3	<i>Solutions of Racemic Compounds, 192</i>	
3.3.1	<i>Theoretical Phase Diagrams, 192</i>	3.3.1
3.3.2	<i>Examples of Experimental Phase Diagrams, 194</i>	
3.3.3	<i>Solubility Rules for Partially Resolved Mixtures, 195</i>	
3.4	<i>Solutions of Pseudoracemates, 197</i>	
3.4.1	<i>Theoretical and Experimental Phase Diagrams, 197</i>	3.4.1
3.4.2	<i>Solubility Rules for Partially Resolved Mixtures, 200</i>	

3.5 *Polymorphism in Ternary Systems, 201*
3.5.1 *Description of the Polymorphism of Ternary Systems, 201*
3.5.2 *Polymorphism and Solvation of Crystals, 203*

3.6 *Enantiomeric Purity Determination from Solubility Measurements, 207*
3.6.1 *Conglomerates, 208*
3.6.2 *Racemic Compounds, 210*

PART 2 RESOLUTION OF ENANTIOMER MIXTURES

4. Resolution by Direct Crystallization

217

4.1 *Separation Based upon the Simultaneous Crystallization of the Two Enantiomers, 217*
4.1.1 *Manual Sorting of the Conglomerate. Triage, 217*
4.1.2 *Simultaneous and Separate Crystallization of Enantiomers, 219*
4.1.3 *Simultaneous and Differentiated Crystallization of Enantiomers, 222*

4.2 *Resolution by Entrainment, 223*
4.2.1 *History and First Examples, 223*
4.2.2 *Description of the Process of Resolution by Entrainment, 224*
4.2.3 *Interpretation Based on Solubility Diagrams, 225*
4.2.4 *Racemates Resolvable by Entrainment, 228*
4.2.5 *The Search for Conditions Favoring Entrainment. The Method of Amiard, 229*
4.2.6 *Derivation of Favorable Conditions for Resolutions by Entrainment from the Ternary Diagram, 232*
4.2.7 *Control of Crystallization Rates, 235*

4.3 *Resolution by Entrainment in a Supercooled Melt, 241*
4.3.1 *Theory, 242*
4.3.2 *Application of the Procedure, 243*

4.4 *Crystallization in Optically Active Solvents, 245*
4.4.1 *Solubility of Pure Enantiomers in Optically Active Solvents, 245*

4.4.2	<i>Resolution Experiments</i> , 246	5.2
4.4.3	<i>Origin of the Preferential Crystallization Phenomenon</i> , 247	5.2
4.4.4	<i>Resolution with Inclusion of an Optically Active Solvent</i> , 249	5.2
5	Formation and Separation of Diastereomers	251
5.1	<i>Dissociable Compounds and Complexes</i>, 253	
5.1.1	<i>Resolution of Acids</i> , 257	1.8
5.1.2	<i>Resolution of Bases</i> , 259	1.8
5.1.3	<i>Resolution of Amino Acids</i> , 261	1.8
5.1.4	<i>Resolution of Alcohols. Transformation of Alcohols into Salt-Forming Derivatives</i> , 263	1.8
5.1.5	<i>Resolution of Aldehydes and Ketones. Transformation of Carbonyl Compounds into Salt-Forming Derivatives</i> , 266	1.8
5.1.6	<i>Diastereomeric Salts and Resolution of Werner Complexes</i> , 268	1.8
5.1.7	<i>Lewis Acid-Base Complexes</i> , 273	1.8
5.1.8	<i>Crystalline Inclusion Compounds</i> , 275	1.8
5.1.9	<i>Quasi-Racemates</i> , 282	1.8
5.1.10	<i>Physical Properties of Diastereomeric Salts</i> , 283	1.8435
5.1.11	<i>Binary Melting Point Diagrams of Diastereomeric Salts</i> , 289	1.8
5.1.12	<i>Solubility Diagrams of Diastereomer Salt Mixtures</i> , 290	1.8
5.1.13	<i>Double Salts</i> , 295	1.8
5.1.14	<i>Cocrystallization of Diastereomeric Salts</i> , 299	1.8
5.1.15	<i>Isolation of the More Soluble Diastereomeric Salt. The Method of Ingersoll</i> , 301	1.8
5.1.16	<i>The Markwald Principle and Reciprocal Resolutions</i> , 306	1.8
5.1.17	<i>Resolution with Nonstoichiometric Quantities of Reagents</i> , 307	1.8
5.1.18	<i>The Method of Pope and Peachey</i> , 309	1.8
5.1.19	<i>Dissociation and Solubility of Salts. Interpretation of "Nonstoichiometric" Resolutions</i> , 312	1.8
5.1.20	<i>Optical Rotations of Diastereomeric Salts and Their Constituents</i> , 317	1.8

5.2	<i>Covalent Compounds</i> , 328	
5.2.1	<i>Covalent Derivatives of Acids</i> , 329	
5.2.2	<i>Covalent Derivatives of Amines</i> , 330	
5.2.3	<i>Covalent Derivatives of Alcohols, Thiols, and Phenols</i> , 332	
5.2.4	<i>Covalent Derivatives of Aldehydes, Ketones, and Sulfoxides</i> , 335	
5.2.5	<i>Resolution of Olefins, Sulfoxides, and Phosphines via Diastereomeric Zerovalent Complexes</i> , 339	
5.2.6	<i>Physical Properties of Covalent Diastereomers and Their Mixtures</i> , 342	
5.2.7	<i>Chromatographic Behavior of Covalent Diastereomers</i> , 348	
5.3	<i>Structure-Property Correlations of Diastereomers</i> , 359	
5.3.1	<i>Rules of Winther and Werner</i> , 359	
5.3.2	<i>Quasi-Enantiomeric Resolving Agents</i> , 362	
6	Crystallization-Induced Asymmetric Transformations	369
6.1	<i>Asymmetric Disequilibration of a Racemate. Total "Spontaneous Resolution,"</i> 371	
6.2	<i>Asymmetric Transformation of Diastereomeric Salts</i> , 373	
6.3	<i>Asymmetric Transformation of Covalent Diastereomers</i> , 376	
7.	Experimental Aspects and Art of Resolutions	378
7.1	<i>Choice of Resolution Method</i> , 378	
7.1.1	<i>Choice of Method as a Function of Scale</i> , 378	
7.1.2	<i>Choice of Method According to the Structure of the Substrate</i> , 379	
7.2	<i>Obtaining Crystalline Diastereomers</i> , 380	
7.2.1	<i>Systematic Trials. Choice of Resolving Agent</i> , 380	
7.2.2	<i>Choice of Crystallization Solvent</i> , 383	
7.2.3	<i>Isolation of the First Crystallization Seeds</i> , 386	
7.2.4	<i>Neutral Salts and Acid (or Basic) Salts</i> , 387	
7.3	<i>Purification of Diastereomers</i> , 389	
7.3.1	<i>Optimal Conditions for Crystallization. Quantity of Solvent</i> , 389	
7.3.2	<i>Crystallization with Seeding</i> , 391	

7.3.3	<i>Influence of Temperature</i> , 392
7.3.4	<i>Fractional Crystallization</i> , 392
7.3.5	<i>Use of Optically Impure Resolving Agents</i> , 393
7.4	<i>Recovery of Enantiomers from Diastereomers</i> , 396
7.4.1	<i>Decomposition of Diastereomeric Salts</i> , 396
7.4.2	<i>Decomposition of Covalent Diastereomers</i> , 399
7.4.3	<i>Recovery and Purification of Resolving Agents</i> , 403
7.5	<i>Monitoring Enantiomeric Purity</i> , 405
7.5.1	<i>Analysis of Diastereomer Mixtures</i> , 406
7.5.2	<i>Enantiomeric Composition by Means of Diastereomeric Interactions</i> , 410
7.5.3	<i>Calorimetric Methods</i> , 416
7.5.4	<i>Isotope Labeling</i> , 417
7.5.5	<i>Quantitative Enzymatic Analysis</i> , 419
7.6	<i>Final Purification. Enrichment of Partially Resolved Enantiomer Mixtures</i> , 423
7.6.1	<i>Definitions. Pure and Ultrapure Enantiomers</i> , 423
7.6.2	<i>Classical Final Purification</i> , 424
7.6.3	<i>Ultrapurification by Zone Melting</i> , 428
7.6.4	<i>Chemical Purification</i> , 430