

Contents

Foreword to Second Edition (by David T. Clarkson)	v
About the Authors	vii
Foreword to First Edition (by David T. Clarkson)	ix
Acknowledgments	xi
Abbreviations	xiii
1. Assumptions and Approaches	1
Introduction – History, Assumptions, and Approaches	1
1 What Is Ecophysiology?	1
2 The Roots of Ecophysiology	1
3 Physiological Ecology and the Distribution of Organisms	2
4 Time Scale of Plant Response to Environment	4
5 Conceptual and Experimental Approaches	6
6 New Directions in Ecophysiology	7
7 The Structure of the Book	7
References	8
2. Photosynthesis, Respiration, and Long-Distance Transport	11
2A. Photosynthesis	11
1 Introduction	11
2 General Characteristics of the Photosynthetic Apparatus	11
2.1 The “Light” and “Dark” Reactions of Photosynthesis	11
2.1.1 Absorption of Photons	12
2.1.2 Fate of the Excited Chlorophyll	13
2.1.3 Membrane-Bound Photosynthetic Electron Transport and Bioenergetics	14
2.1.4 Photosynthetic Carbon Reduction	14
2.1.5 Oxygenation and Photorespiration	15

2.2	Supply and Demand of CO ₂ in the Photosynthetic Process	16
2.2.1	Demand for CO ₂ —the CO ₂ —Response Curve	16
2.2.2	Supply of CO ₂ —Stomatal and Boundary Layer Conductances	21
2.2.3	The Mesophyll Conductance	22
3	Response of Photosynthesis to Light	26
3.1	The Light Climate Under a Leaf Canopy	26
3.2	Physiological, Biochemical, and Anatomical Differences Between Sun and Shade Leaves	27
3.2.1	The Light-Response Curve of Sun and Shade Leaves	27
3.2.2	Anatomy and Ultrastructure of Sun and Shade Leaves	29
3.2.3	Biochemical Differences Between Shade and Sun Leaves	32
3.2.4	The Light-Response Curve of Sun and Shade Leaves Revisited	33
3.2.5	The Regulation of Acclimation	35
3.3	Effects of Excess Irradiance	36
3.3.1	Photoinhibition—Protection by Carotenoids of the Xanthophyll Cycle	36
3.3.2	Chloroplast Movement in Response to Changes in Irradiance	41
3.4	Responses to Variable Irradiance	42
3.4.1	Photosynthetic Induction	43
3.4.2	Light Activation of Rubisco	43
3.4.3	Post-illumination CO ₂ Assimilation and Sunfleck-Utilization Efficiency	45
3.4.4	Metabolite Pools in Sun and Shade Leaves	45
3.4.5	Net Effect of Sunflecks on Carbon Gain and Growth	47
4	Partitioning of the Products of Photosynthesis and Regulation by “Feedback”	47
4.1	Partitioning Within the Cell	47
4.2	Short-Term Regulation of Photosynthetic Rate by Feedback	48
4.3	Sugar-Induced Repression of Genes Encoding Calvin-Cycle Enzymes	51
4.4	Ecological Impacts Mediated by Source-Sink Interactions	51
5	Responses to Availability of Water	51
5.1	Regulation of Stomatal Opening	53
5.2	The A—C _c Curve as Affected by Water Stress	54
5.3	Carbon-Isotope Fractionation in Relation to Water-Use Efficiency	56
5.4	Other Sources of Variation in Carbon-Isotope Ratios in C ₃ Plants	57
6	Effects of Soil Nutrient Supply on Photosynthesis	58
6.1	The Photosynthesis—Nitrogen Relationship	58
6.2	Interactions of Nitrogen, Light, and Water	59
6.3	Photosynthesis, Nitrogen, and Leaf Life Span	59
7	Photosynthesis and Leaf Temperature: Effects and Adaptations	60
7.1	Effects of High Temperatures on Photosynthesis	60
7.2	Effects of Low Temperatures on Photosynthesis	61
8	Effects of Air Pollutants on Photosynthesis	63
9	C ₄ Plants	64
9.1	Introduction	64
9.2	Biochemical and Anatomical Aspects	64

9.3	Intercellular and Intracellular Transport of Metabolites of the C ₄ Pathway	67
9.4	Photosynthetic Efficiency and Performance at High and Low Temperatures	68
9.5	C ₃ —C ₄ Intermediates	71
9.6	Evolution and Distribution of C ₄ Species	73
9.7	Carbon-Isotope Composition of C ₄ Species	75
10	CAM Plants	75
10.1	Introduction	75
10.2	Physiological, Biochemical, and Anatomical Aspects	76
10.3	Water-Use Efficiency	79
10.4	Incomplete and Facultative CAM Plants	79
10.5	Distribution and Habitat of CAM Species	80
10.6	Carbon-Isotope Composition of CAM Species	81
11	Specialized Mechanisms Associated with Photosynthetic Carbon Acquisition in Aquatic Plants	82
11.1	Introduction	82
11.2	The CO ₂ Supply in Water	82
11.3	The Use of Bicarbonate by Aquatic Macrophytes	83
11.4	The Use of CO ₂ from the Sediment	84
11.5	Crassulacean Acid Metabolism (CAM) in Aquatic Plants	85
11.6	Carbon-Isotope Composition of Aquatic Plants	85
11.7	The Role of Aquatic Macrophytes in Carbonate Sedimentation	85
12	Effects of the Rising CO ₂ Concentration in the Atmosphere	87
12.1	Acclimation of Photosynthesis to Elevated CO ₂ Concentrations	89
12.2	Effects of Elevated CO ₂ on Transpiration—Differential Effects on C ₃ , C ₄ , and CAM Plants	90
13	Summary: What Can We Gain from Basic Principles and Rates of Single-Leaf Photosynthesis?	90
	References	91
2B.	Respiration	101
1	Introduction	101
2	General Characteristics of the Respiratory System	101
2.1	The Respiratory Quotient	101
2.2	Glycolysis, the Pentose Phosphate Pathway, and the Tricarboxylic (TCA) Cycle	103
2.3	Mitochondrial Metabolism	103
2.3.1	The Complexes of the Electron-Transport Chain	104
2.3.2	A Cyanide-Resistant Terminal Oxidase	105
2.3.3	Substrates, Inhibitors, and Uncouplers	105
2.3.4	Respiratory Control	106
2.4	A Summary of the Major Points of Control of Plant Respiration	107
2.5	ATP Production in Isolated Mitochondria and In Vivo	107
2.5.1	Oxidative Phosphorylation: The Chemiosmotic Model	107
2.5.2	ATP Production In Vivo	107
2.6	Regulation of Electron Transport via the Cytochrome and the Alternative Paths	109
2.6.1	Competition or Overflow?	109
2.6.2	The Intricate Regulation of the Alternative Oxidase	110

2.6.3 Mitochondrial NAD(P)H Dehydrogenases That Are Not Linked to Proton Extrusion	112
3 The Ecophysiological Function of the Alternative Path	112
3.1 Heat Production	112
3.2 Can We Really Measure the Activity of the Alternative Path?	113
3.3 The Alternative Path as an Energy Overflow	114
3.4 NADH Oxidation in the Presence of a High Energy Charge	117
3.5 NADH Oxidation to Oxidize Excess Redox Equivalents from the Chloroplast	117
3.6 Continuation of Respiration When the Activity of the Cytochrome Path Is Restricted	118
3.7 A Summary of the Various Ecophysiological Roles of the Alternative Oxidase	118
4 Environmental Effects on Respiratory Processes	119
4.1 Flooded, Hypoxic, and Anoxic Soils	119
4.1.1 Inhibition of Aerobic Root Respiration	119
4.1.2 Fermentation	119
4.1.3 Cytosolic Acidosis	120
4.1.4 Avoiding Hypoxia: Aerenchyma Formation	121
4.2 Salinity and Water Stress	122
4.3 Nutrient Supply	123
4.4 Irradiance	123
4.5 Temperature	127
4.6 Low pH and High Aluminum Concentrations	129
4.7 Partial Pressures of CO ₂	130
4.8 Effects of Plant Pathogens	131
4.9 Leaf Dark Respiration as Affected by Photosynthesis	132
5 The Role of Respiration in Plant Carbon Balance	132
5.1 Carbon Balance	132
5.1.1 Root Respiration	132
5.1.2 Respiration of Other Plant Parts	133
5.2 Respiration Associated with Growth, Maintenance, and Ion Uptake	134
5.2.1 Maintenance Respiration	134
5.2.2 Growth Respiration	136
5.2.3 Respiration Associated with Ion Transport	140
5.2.4 Experimental Evidence	140
6 Plant Respiration: Why Should It Concern Us from an Ecological Point of View?	143
References	144
2C. Long-Distance Transport of Assimilates	151
1 Introduction	151
2 Major Transport Compounds in the Phloem: Why Not Glucose?	151
3 Phloem Structure and Function	153
3.1 Symplastic and Apoplastic Transport	154
3.2 Minor Vein Anatomy	154
3.3 Sugar Transport against a Concentration Gradient	155
4 Evolution and Ecology of Phloem Loading Mechanisms	157
5 Phloem Unloading	157
6 The Transport Problems of Climbing Plants	160
7 Phloem Transport: Where to Move from Here?	161
References	161

3. Plant Water Relations	163
1 Introduction	163
1.1 The Role of Water in Plant Functioning	163
1.2 Transpiration as an Inevitable Consequence of Photosynthesis	164
2 Water Potential	165
3 Water Availability in Soil	165
3.1 The Field Capacity of Different Soils	169
3.2 Water Movement Toward the Roots	170
3.3 Rooting Profiles as Dependent on Soil Moisture Content	171
3.4 Roots Sense Moisture Gradients and Grow Toward Moist Patches	173
4 Water Relations of Cells	174
4.1 Osmotic Adjustment	175
4.2 Cell-Wall Elasticity	175
4.3 Osmotic and Elastic Adjustment as Alternative Strategies	177
4.4 Evolutionary Aspects	178
5 Water Movement Through Plants	178
5.1 The Soil—Plant—Air Continuum	178
5.2 Water in Roots	179
5.3 Water in Stems	183
5.3.1 Can We Measure Negative Xylem Pressures?	185
5.3.2 The Flow of Water in the Xylem	186
5.3.3 Cavitation or Embolism: The Breakage of the Xylem Water Column	188
5.3.4 Can Embolized Conduits Resume Their Function?	191
5.3.5 Trade-off Between Conductance and Safety	192
5.3.6 Transport Capacity of the Xylem and Leaf Area	194
5.3.7 Storage of Water in Stems	195
5.4 Water in Leaves and Water Loss from Leaves	196
5.4.1 Effects of Soil Drying on Leaf Conductance	196
5.4.2 The Control of Stomatal Movements and Stomatal Conductance	199
5.4.3 Effects of Vapor Pressure Difference or Transpiration Rate on Stomatal Conductance	201
5.4.4 Effects of Irradiance and CO ₂ on Stomatal Conductance	203
5.4.5 The Cuticular Conductance and the Boundary Layer Conductance	203
5.4.6 Stomatal Control: A Compromise Between Carbon Gain and Water Loss	204
6 Water-Use Efficiency	206
6.1 Water-Use Efficiency and Carbon-Isotope Discrimination	206
6.2 Leaf Traits That Affect Leaf Temperature and Leaf Water Loss	207
6.3 Water Storage in Leaves	209
7 Water Availability and Growth	210
8 Adaptations to Drought	211
8.1 Desiccation Avoidance: Annuals and Drought-Deciduous Species	211
8.2 Dessenation Tolerance: Evergreen Shrubs	212
8.3 Resurrection Plants	212
9 Winter Water Relations and Freezing Tolerance	214
10 Salt Tolerance	216
11 Final Remarks: The Message That Transpires	216
References	217

4. Leaf Energy Budgets: Effects of Radiation and Temperature	225
4A. The Plant's Energy Balance	
1 Introduction	225
2 Energy Inputs and Outputs	225
2.1 Short Overview of a Leaf's Energy Balance	225
2.2 Short-Wave Solar Radiation	226
2.3 Long-Wave Terrestrial Radiation	229
2.4 Convective Heat Transfer	230
2.5 Evaporative Energy Exchange	232
2.6 Metabolic Heat Generation	234
3 Modeling the Effect of Components of the Energy Balance on Leaf Temperature	234
4 A Summary of Hot and Cool Topics	235
References	235
4B. Effects of Radiation and Temperature	
1 Introduction	237
2 Radiation	237
2.1 Effects of Excess Irradiance	237
2.2 Effects of Ultraviolet Radiation	237
2.2.1 Damage by UV	238
2.2.2 Protection Against UV: Repair or Prevention	238
3 Effects of Extreme Temperatures	239
3.1 How Do Plants Avoid Damage by Free Radicals at Low Temperature?	239
3.2 Heat-Shock Proteins	241
3.3 Are Isoprene and Monoterpene Emissions an Adaptation to High Temperatures?	241
3.4 Chilling Injury and Chilling Tolerance	242
3.5 Carbohydrates and Proteins Conferring Frost Tolerance	243
4 Global Change and Future Crops	244
References	244
5. Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level	247
1 Introduction	247
2 Canopy Water Use	247
3 Canopy CO ₂ Fluxes	251
4 Canopy Water-Use Efficiency	252
5 Canopy Effects on Microclimate: A Case Study	253
6 Aiming for a Higher Level	253
References	253
6. Mineral Nutrition	255
1 Introduction	255
2 Acquisition of Nutrients	255
2.1 Nutrients in the Soil	255
2.1.1 Nutrient Availability as Dependent on Soil Age	255

2.1.2	Nutrient Supply Rate	257
2.1.3	Nutrient Movement to the Root Surface	259
2.2	Root Traits That Determine Nutrient Acquisition	262
2.2.1	Increasing the Roots' Absorptive Surface	262
2.2.2	Transport Proteins: Ion Channels and Carriers	263
2.2.3	Acclimation and Adaptation of Uptake Kinetics	265
2.2.4	Acquisition of Nitrogen	269
2.2.5	Acquisition of Phosphorus	270
2.2.6	Changing the Chemistry in the Rhizosphere	275
2.2.7	Rhizosphere Mineralization	279
2.2.8	Root Proliferation in Nutrient-Rich Patches: Is It Adaptive?	280
2.3	Sensitivity Analysis of Parameters Involved in Phosphate Acquisition	282
3	Nutrient Acquisition from "Toxic" or "Extreme" Soils	284
3.1	Acid Soils	284
3.1.1	Aluminum Toxicity	284
3.1.2	Alleviation of the Toxicity Symptoms by Soil Amendment	287
3.1.3	Aluminum Resistance	287
3.2	Calcareous Soils	288
3.3	Soils with High Levels of Heavy Metals	289
3.3.1	Why Are the Concentrations of Heavy Metals in Soil High?	289
3.3.2	Using Plants to Clean or Extract Polluted Water and Soil: Phytoremediation and Phytomining	290
3.3.3	Why Are Heavy Metals So Toxic to Plants?	291
3.3.4	Heavy-Metal-Resistant Plants	291
3.3.5	Biomass Production of Sensitive and Resistant Plants	296
3.4	Saline Soils: An Ever-Increasing Problem in Agriculture	296
3.4.1	Glycophytes and Halophytes	297
3.4.2	Energy-Dependent Salt Exclusion from Roots	297
3.4.3	Energy-Dependent Salt Exclusion from the Xylem	298
3.4.4	Transport of Na^+ from the Leaves to the Roots and Excretion via Salt Glands	298
3.4.5	Compartmentation of Salt Within the Cell and Accumulation of Compatible Solutes	301
3.5	Flooded Soils	301
4	Plant Nutrient-Use Efficiency	302
4.1	Variation in Nutrient Concentration	302
4.1.1	Tissue Nutrient Concentration	302
4.1.2	Tissue Nutrient Requirement	303
4.2	Nutrient Productivity and Mean Residence Time	304
4.2.1	Nutrient Productivity	304
4.2.2	The Mean Residence Time of Nutrients in the Plant	304
4.3	Nutrient Loss from Plants	306
4.3.1	Leaching Loss	306
4.3.2	Nutrient Loss by Senescence	307
4.4	Ecosystem Nutrient-Use Efficiency	308
5	Mineral Nutrition: A Vast Array of Adaptations and Acclimations	310
	References	310

7. Growth and Allocation	321
1 Introduction: What Is Growth?	321
2 Growth of Whole Plants and Individual Organs	321
2.1 Growth of Whole Plants	322
2.1.1 A High Leaf Area Ratio Enables Plants to Grow Fast	322
2.1.2 Plants with High Nutrient Concentrations Can Grow Faster	322
2.2 Growth of Cells	323
2.2.1 Cell Division and Cell Expansion: The Lockhart Equation	323
2.2.2 Cell-Wall Acidification and Removal of Calcium Reduce Cell-Wall Rigidity	324
2.2.3 Cell Expansion in Meristems Is Controlled by Cell-Wall Extensibility and Not by Turgor	327
2.2.4 The Physical and Biochemical Basis of Yield Threshold and Cell-Wall Yield Coefficient	328
2.2.5 The Importance of Meristem Size	328
3 The Physiological Basis of Variation in RGR—Plants Grown with Free Access to Nutrients	328
3.1 SLA Is a Major Factor Associated with Variation in RGR	330
3.2 Leaf Thickness and Leaf Mass Density	332
3.3 Anatomical and Chemical Differences Associated with Leaf Mass Density	332
3.4 Net Assimilation Rate, Photosynthesis, and Respiration	333
3.5 RGR and the Rate of Leaf Elongation and Leaf Appearance	333
3.6 RGR and Activities per Unit Mass	334
3.7 RGR and Suites of Plant Traits	334
4 Allocation to Storage	335
4.1 The Concept of Storage	336
4.2 Chemical Forms of Stores	337
4.3 Storage and Remobilization in Annuals	337
4.4 The Storage Strategy of Biennials	338
4.5 Storage in Perennials	338
4.6 Costs of Growth and Storage: Optimization	340
5 Environmental Influences	340
5.1 Growth as Affected by Irradiance	341
5.1.1 Growth in Shade	341
5.1.2 Effects of the Photoperiod	345
5.2 Growth as Affected by Temperature	346
5.2.1 Effects of Low Temperature on Root Functioning	346
5.2.2 Changes in the Allocation Pattern	346
5.3 Growth as Affected by Soil Water Potential and Salinity	347
5.3.1 Do Roots Sense Dry Soil and Then Send Signals to the Leaves?	348
5.3.2 ABA and Leaf Cell-Wall Stiffening	348
5.3.3 Effects on Root Elongation	348
5.3.4 A Hypothetical Model That Accounts for Effects of Water Stress on Biomass Allocation	349
5.4 Growth at a Limiting Nutrient Supply	349
5.4.1 Cycling of Nitrogen Between Roots and Leaves	349
5.4.2 Hormonal Signals That Travel via the Xylem to the Leaves	350
5.4.3 Signals That Travel from the Leaves to the Roots	351
5.4.4 Integrating Signals from the Leaves and the Roots	351

5.4.5	Effects of Nitrogen Supply on Leaf Anatomy and Chemistry	352
5.4.6	Nitrogen Allocation to Different Leaves, as Dependent on Incident Irradiance	352
5.5	Plant Growth as Affected by Soil Compaction	354
5.5.1	Effects on Biomass Allocation: Is ABA Involved?	354
5.5.2	Changes in Root Length and Diameter: A Modification of the Lockhart Equation	354
5.6	Growth as Affected by Soil Flooding	355
5.6.1	The Pivotal Role of Ethylene	356
5.6.2	Effects on Water Uptake and Leaf Growth	357
5.6.3	Effects on Adventitious Root Formation	358
5.6.4	Effects on Radial Oxygen Loss	358
5.7	Growth as Affected by Submergence	358
5.7.1	Gas Exchange	359
5.7.2	Perception of Submergence and Regulation of Shoot Elongation	359
5.8	Growth as Affected by Touch and Wind	360
5.9	Growth as Affected by Elevated Concentrations of CO ₂ in the Atmosphere	361
6	Adaptations Associated with Inherent Variation in Growth Rate	362
6.1	Fast- and Slow-Growing Species	362
6.2	Growth of Inherently Fast- and Slow-Growing Species Under Resource-Limited Conditions	363
6.2.1	Growth at a Limiting Nutrient Supply	364
6.2.2	Growth in the Shade	364
6.3	Are There Ecological Advantages Associated with a High or Low RGR?	364
6.3.1	Various Hypotheses	364
6.3.2	Selection on RGR _{max} Itself, or on Traits That Are Associated with RGR _{max} ?	365
6.3.3	An Appraisal of Plant Distribution Requires Information on Ecophysiology	366
7	Growth and Allocation: The Messages About Plant Messages	367
	References	367
8.	Life Cycles: Environmental Influences and Adaptations	375
1	Introduction	375
2	Seed Dormancy and Germination	375
2.1	Hard Seed Coats	376
2.2	Germination Inhibitors in the Seed	377
2.3	Effects of Nitrate	378
2.4	Other External Chemical Signals	378
2.5	Effects of Light	380
2.6	Effects of Temperature	382
2.7	Physiological Aspects of Dormancy	384
2.8	Summary of Ecological Aspects of Seed Germination and Dormancy	385
3	Developmental Phases	385
3.1	Seedling Phase	385
3.2	Juvenile Phase	386
3.2.1	Delayed Flowering in Biennials	387
3.2.2	Juvenile and Adult Traits	388

3.2.3	Vegetative Reproduction	388
3.2.4	Delayed Greening During Leaf Development in Tropical Trees	390
3.3	Reproductive Phase	391
3.3.1	Timing by Sensing Daylength: Long-Day and Short-Day Plants	391
3.3.2	Do Plants Sense the Difference Between a Certain Daylength in Spring and Autumn?	393
3.3.3	Timing by Sensing Temperature: Vernalization	393
3.3.4	Effects of Temperature on Plant Development	394
3.3.5	Attracting Pollinators	394
3.3.6	The Cost of Flowering	395
3.4	Fruiting	396
3.5	Senescence	397
4	Seed Dispersal	397
4.1	Dispersal Mechanisms	397
4.2	Life-History Correlates	398
5	The Message to Disperse: Perception, Transduction, and Response	398
	References	398
9.	Biotic Influences	403
9A.	Symbiotic Associations	403
1	Introduction	403
2	Mycorrhizas	403
2.1	Mycorrhizal Structures: Are They Beneficial for Plant Growth?	404
2.1.1	The Infection Process	408
2.1.2	Mycorrhizal Responsiveness	410
2.2	Nonmycorrhizal Species and Their Interactions with Mycorrhizal Species	412
2.3	Phosphate Relations	413
2.3.1	Mechanisms That Account for Enhanced Phosphate Absorption by Mycorrhizal Plants	413
2.3.2	Suppression of Colonization at High Phosphate Availability	415
2.4	Effects on Nitrogen Nutrition	416
2.5	Effects on the Acquisition of Water	417
2.6	Carbon Costs of the Mycorrhizal Symbiosis	418
2.7	Agricultural and Ecological Perspectives	419
3	Associations with Nitrogen-Fixing Organisms	421
3.1	Symbiotic N ₂ Fixation Is Restricted to a Fairly Limited Number of Plant Species	422
3.2	Host—Guest Specificity in the Legume—Rhizobium Symbiosis	424
3.3	The Infection Process in the Legume—Rhizobium Association	424
3.3.1	The Role of Flavonoids	425
3.3.2	<i>Rhizobial nod Genes</i>	425
3.3.3	Entry of the Bacteria	427
3.3.4	Final Stages of the Establishment of the Symbiosis	428
3.4	Nitrogenase Activity and Synthesis of Organic Nitrogen	429

3.5	Carbon and Energy Metabolism of the Nodules	431
3.6	Quantification of N ₂ Fixation In Situ	432
3.7	Ecological Aspects of the Nonsymbiotic Association with N ₂ -Fixing Microorganisms	433
3.8	Carbon Costs of the Legume – Rhizobium Symbiosis	434
3.9	Suppression of the Legume – Rhizobium Symbiosis at Low pH and in the Presence of a Large Supply of Combined Nitrogen	435
4	Endosymbionts	436
5	Plant Life Among Microsymbionts	437
	References	437
9B.	Ecological Biochemistry: Allelopathy and Defence against Herbivores	445
1	Introduction	445
2	Allelopathy (Interference Competition)	445
3	Chemical Defense Mechanisms	448
3.1	Defense Against Herbivores	448
3.2	Qualitative and Quantitative Defense Compounds	451
3.3	The Arms Race of Plants and Herbivores	451
3.4	How Do Plants Avoid Being Killed by Their Own Poisons?	455
3.5	Secondary Metabolites for Medicines and Crop Protection	457
4	Environmental Effects on the Production of Secondary Plant Metabolites	460
4.1	Abiotic Factors	460
4.2	Induced Defense and Communication Between Neighboring Plants	462
4.3	Communication Between Plants and Their Bodyguards	464
5	The Costs of Chemical Defense	466
5.1	Diversion of Resources from Primary Growth	466
5.2	Strategies of Predators	468
5.3	Mutualistic Associations with Ants and Mites	469
6	Detoxification of Xenobiotics by Plants: Phytoremediation	469
7	Secondary Chemicals and Messages That Emerge from This Chapter	472
	References	473
9C.	Effects of Microbial Pathogens	479
1	Introduction	479
2	Constitutive Antimicrobial Defense Compounds	479
3	The Plant's Response to Attack by Microorganisms	481
4	Cross-Talk Between Induced Systemic Resistance and Defense Against Herbivores	485
5	Messages from One Organism to Another	488
	References	488
9D.	Parasitic Associations	491
1	Introduction	491
2	Growth and Development	492
2.1	Seed Germination	492
2.2	Haustoria Formation	493
2.3	Effects of the Parasite on Host Development	496
3	Water Relations and Mineral Nutrition	498
4	Carbon Relations	500

5 What Can We Extract from This Chapter?	501
References	501
9E. Interactions Among Plants	505
1 Introduction	505
2 Theories of Competitive Mechanisms	509
3 How Do Plants Perceive the Presence of Neighbors?	509
4 Relationship of Plant Traits to Competitive Ability	512
4.1 Growth Rate and Tissue Turnover	512
4.2 Allocation Pattern, Growth Form, and Tissue Mass Density	513
4.3 Plasticity	514
5 Traits Associated with Competition for Specific Resources	516
5.1 Nutrients	516
5.2 Water	517
5.3 Light	518
5.4 Carbon Dioxide	518
6 Positive Interactions Among Plants	521
6.1 Physical Benefits	521
6.2 Nutritional Benefits	521
6.3 Allelochemical Benefits	521
7 Plant–Microbial Symbiosis	522
8 Succession	524
9 What Do We Gain from This Chapter?	526
References	527
9F. Carnivory	533
1 Introduction	533
2 Structures Associated with the Catching of the Prey and Subsequent Withdrawal of Nutrients from the Prey	533
3 Some Case Studies	536
3.1 Dionaea Muscipula	537
3.2 The Suction Traps of <i>Utricularia</i>	539
3.3 The Tentacles of <i>Drosera</i>	541
3.4 Pitchers of <i>Sarracenia</i>	542
3.5 Passive Traps of <i>Genlisea</i>	542
4 The Message to Catch	543
References	543
10. Role in Ecosystem and Global Processes	545
10A. Decomposition	545
1 Introduction	545
2 Litter Quality and Decomposition Rate	546
2.1 Species Effects on Litter Quality: Links with Ecological Strategy	546
2.2 Environmental Effects on Decomposition	547
3 The Link Between Decomposition Rate and Nutrient Supply	548
3.1 The Process of Nutrient Release	548
3.2 Effects of Litter Quality on Mineralization	549
3.3 Root Exudation and Rhizosphere Effects	550
4 The End Product of Decomposition	552
References	552

10B. Ecosystem and Global Processes:	
Ecophysiological Controls	555
1 Introduction	555
2 Ecosystem Biomass and Production	555
2.1 Scaling from Plants to Ecosystems	555
2.2 Physiological Basis of Productivity	556
2.3 Disturbance and Succession	558
2.4 Photosynthesis and Absorbed Radiation	559
2.5 Net Carbon Balance of Ecosystems	561
2.6 The Global Carbon Cycle	561
3 Nutrient Cycling	563
3.1 Vegetation Controls over Nutrient Uptake and Loss	563
3.2 Vegetation Controls over Mineralization	565
4 Ecosystem Energy Exchange and the Hydrologic Cycle	565
4.1 Vegetation Effects on Energy Exchange	565
4.1.1 Albedo	565
4.1.2 Surface Roughness and Energy Partitioning	566
4.2 Vegetation Effects on the Hydrologic Cycle	567
4.2.1 Evapotranspiration and Runoff	567
4.2.2 Feedbacks to Climate	568
5 Moving to a Higher Level: Scaling from Physiology to the Globe	568
References	569
 Glossary	573
Index	591