

Contents

<i>Acknowledgements</i>	<i>page xvii</i>
1 Introduction	1
2 A framework for investigating biological patterns and processes	7
2.1 Introduction	7
2.2 Observations	8
2.3 Models, theories, explanations	10
2.3.1 Models of physiological stress	10
2.3.2 Models based on competition	10
2.3.3 Grazing models	10
2.3.4 Models to do with hazards	11
2.3.5 Models of failure of recruitment	11
2.4 Numerous competing models	12
2.5 Hypotheses, predictions	13
2.6 Null hypotheses	15
2.7 Experiments and their interpretation	16
2.8 What to do next?	17
2.9 Measurements, gathering data and a logical structure	19
2.10 A consideration: why are you measuring things?	21
2.11 Conclusion: a plea for more thought	22
3 Populations, frequency distributions and samples	24
3.1 Introduction	24
3.2 Variability in measurements	24
3.3 Observations and measurements as frequency distributions	25

	<i>Contents</i>		<i>Contents</i>	
3.4 Defining the population to be observed	27	5.9 Student's <i>t</i> -test for a mensurative hypothesis	82	
3.5 The need for samples	30	5.10 Goodness-of-fit, mensurative experiments and logic	84	
3.6 The location parameter	30	5.11 Type I and Type II errors in relation to a null hypothesis	87	
3.7 Sample estimate of the location parameter	33	5.12 Determining the power of a simple statistical test	91	
3.8 The dispersion parameter	34	5.12.1 Probability of Type I error	92	
3.9 Sample estimate of the dispersion parameter	36	5.12.2 Size of experiment (<i>n</i>)	93	
3.10 Degrees of freedom	37	5.12.3 Variance of the population	95	
3.11 Representative sampling and accuracy of samples	38	5.12.4 'Effect size'	97	
3.12 Other useful parameters	44	5.13 Power and alternative hypotheses	97	
3.12.1 Skewness	44			
3.12.2 Kurtosis	47			
4 Statistical tests of null hypotheses	50	6 Simple experiments comparing the means of two populations	100	
4.1 Why a statistical test?	50	6.1 Paired comparisons	100	
4.2 An example using coins	50	6.2 Confounding and lack of controls	104	
4.3 The components of a statistical test	51	6.3 Unpaired experiments	106	
4.3.1 Null hypothesis	55	6.4 Standard error of the difference between two means	107	
4.3.2 Test statistic	55	6.4.1 Independence of samples	108	
4.3.3 Region of rejection and critical value	56	6.4.2 Homogeneity of variances	109	
4.4 Type I error or rejection of a true null hypothesis	56	6.5 Allocation of sample units to treatments	114	
4.5 Statistical test of a theoretical biological example	57	6.6 Interpretation of a simple ecological experiment	118	
4.5.1 Transformation of a normal distribution to the standard normal distribution	58	6.7 Power of an experimental comparison of two populations	124	
4.6 One- and two-tailed null hypotheses	59	6.8 Alternative procedures	128	
	62	6.8.1 Binomial (sign) test for paired data	128	
5 Statistical tests on samples	65	6.8.2 Other alternative procedures	130	
5.1 Repeated sampling	65	6.9 Are experimental comparisons of only two populations useful?	132	
5.2 The standard error from the normal distribution of sample means	65	6.9.1 The wrong population is being sampled	132	
5.3 Confidence intervals for a sampled mean	70	6.9.2 Modifications to the <i>t</i> -test to compare more than two populations	137	
5.4 Precision of a sample estimate of the mean	70	6.9.3 Conclusion	139	
5.5 A contrived example of use of the confidence interval of sampled means	73			
5.6 Student's <i>t</i> -distribution	74	7 Analysis of variance	140	
5.7 Increasing precision of sampling	76	7.1 Introduction	140	
5.7.1 The chosen probability used to construct the confidence interval	77	7.2 Data collected to test a single-factor null hypothesis	141	
5.7.2 The sample size (<i>n</i>)	78	7.3 Partitioning of the data: the analysis of variation	143	
5.7.3 The variance of the population (σ^2)	78	7.4 A linear model	145	
5.8 Description of sampling	80	7.5 What do the sums of squares measure?	149	
	81	7.6 Degrees of freedom	152	
		7.7 Mean squares and test statistic	153	

	<i>Contents</i>
7.8 Solution to some problems raised earlier	154
7.9 So what happens with real data?	155
7.10 Unbalanced data	156
7.11 Machine formulae	157
7.12 Interpretation of the result	157
7.13 Assumptions of analysis of variance	158
7.14 Independence of data	159
7.14.1 Positive correlation within samples	160
7.14.2 Negative correlation within samples	166
7.14.3 Negative correlation among samples	168
7.14.4 Positive correlation among samples	172
7.15 Dealing with non-independence	179
7.16 Heterogeneity of variances	181
7.16.1 Tests for heterogeneity of variances	183
7.17 Quality control	184
7.18 Transformations of data	187
7.18.1 Square-root transformation of counts (or Poisson data)	188
7.18.2 Log transformation for rates, ratios, concentrations and other data	189
7.18.3 Arc-sin transformation of percentages and proportions	192
7.18.4 No transformation is possible	192
7.19 Normality of data	194
7.20 The summation assumption	195
8 More analysis of variance	198
8.1 Fixed or random factors	198
8.2 Interpretation of fixed or random factors	204
8.3 Power of an analysis of a fixed factor	209
8.3.1 Non-central <i>F</i> -ratio and power	209
8.3.2 Influences of α , n , σ_e^2 and A_i values	211
8.3.3 Construction of an alternative hypothesis	214
8.4 Power of an analysis of a random factor	216
8.4.1 Central <i>F</i> -ratios and power	216
8.4.2 Influences of α , n , σ_e^2 , σ_A^2 and a	218
8.4.3 Construction of an alternative hypothesis	220
8.5 Alternative analysis of ranked data	223
8.6 Multiple comparisons to identify the alternative hypothesis	224

	<i>Contents</i>
8.6.1 Introduction	224
8.6.2 Problems of excessive Type I error	225
8.6.3 <i>A priori</i> versus <i>a posteriori</i> comparisons	226
8.6.4 <i>A priori</i> procedures	227
8.6.5 <i>A posteriori</i> comparisons	234
9 Nested analyses of variance	243
9.1 Introduction and need	243
9.2 Hurlbert's 'pseudoreplication'	245
9.3 Partitioning of the data	250
9.4 The linear model	254
9.5 Degrees of freedom and mean squares	259
9.6 Tests and interpretation: what do the nested bits mean?	259
9.6.1 <i>F</i> -ratio of appropriate mean squares	260
9.6.2 Solution to confounding	261
9.6.3 Multiple comparisons	261
9.6.4 Variability among replicated units	268
9.7 Pooling of nested components	268
9.7.1 Rationale and procedure	269
9.7.2 Pooling, Type II and Type I errors	273
9.8 Balanced sampling	275
9.9 Nested analyses and spatial pattern	279
9.10 Nested analysis and temporal pattern	283
9.11 Cost-benefit optimization	289
9.12 Calculation of power	291
9.13 Residual variance and an 'error' term	291
10 Factorial experiments	296
10.1 Introduction	296
10.2 Partitioning of variation when there are two experimental factors	300
10.3 Appropriate null hypotheses for a two-factor experiment	305
10.4 A linear model and estimation of components by mean squares	306
10.5 Why do a factorial experiment?	312
10.5.1 Information about interactions	313
10.5.2 Efficiency and cost-effectiveness of factorial designs	316

10.6	Meaning and interpretation of interactions	318
10.7	Interactions of fixed and random factors	323
10.8	Multiple comparisons for two factors	331
10.8.1	When there is a significant interaction	331
10.8.2	When there is no significant interaction	331
10.8.3	Control of experiment-wise probability of Type I error	333
10.9	Three or more factors	335
10.10	Interpretation of interactions among three factors	335
10.11	Power and detection of interactions	340
10.12	Spatial replication of ecological experiments	342
10.13	What to do with a mixed model	344
10.14	Problems with power in a mixed analysis	346
10.15	Magnitudes of effects of treatments	347
10.15.1	Magnitudes of effects of fixed treatments	348
10.15.2	Some problems with such measures	348
10.15.3	Magnitudes of components of variance of random treatments	351
10.16	Problems with estimates of effects	355
10.16.1	Summation and interactions	355
10.16.2	Comparisons among experiments or areas	356
10.16.3	Conclusions on magnitudes of effects	357
11	Construction of any analysis from general principles	358
11.1	General procedures	358
11.2	Constructing the linear model	361
11.3	Calculating the degrees of freedom	362
11.4	Mean square estimates and <i>F</i> -ratios	364
11.5	Designs seen before	370
11.5.1	Designs with two factors	370
11.5.2	Designs with three factors	370
11.6	Construction of sums of squares using orthogonal designs	375
11.7	<i>Post hoc</i> pooling	375
11.8	Quasi <i>F</i> -ratios	377
11.9	Multiple comparisons	378
11.10	Missing data and other practicalities	380
11.10.1	Loss of individual replicates	382
11.10.2	Missing sets of replicates	383

12	Some common and some particular experimental designs	385
12.1	Unreplicated randomized blocks design	385
12.2	Tukey's test for non-additivity	389
12.3	Split-plot designs	391
12.4	Latin squares	401
12.5	Unreplicated repeated measures	403
12.6	Asymmetrical controls: one factor	408
12.7	Asymmetrical controls: fixed factorial designs	409
12.8	Problems with experiments on ecological competition	414
12.9	Asymmetrical analyses of random factors in environmental studies	415
13	Analyses involving relationships among variables	419
13.1	Introduction to linear regression	419
13.2	Tests of null hypotheses about regressions	422
13.3	Assumptions underlying regression	424
13.3.1	Independence of data at each <i>X</i>	425
13.3.2	Homogeneity of variances at each <i>X</i>	427
13.3.3	<i>X</i> values are not fixed	428
13.3.4	Normality of errors in <i>Y</i>	429
13.4	Analysis of variance and regression	431
13.5	How good is the regression?	431
13.6	Multiple regressions	434
13.7	Polynomial regressions	439
13.8	Other, non-linear regressions	444
13.9	Introduction to analysis of covariance	444
13.10	The underlying models for covariance	447
13.10.1	Model 1: Regression in each treatment	448
13.10.2	Model 2: A common regression in each treatment	449
13.10.3	Model 3: The total regression, all data combined	454
13.11	The procedures: making adjustments	457
13.12	Interpretation of the analysis	462
13.13	The assumptions needed for an analysis of covariance	464
13.13.1	Assumptions in regressions	464
13.13.2	Assumptions in analysis of variance	465
13.13.3	Assumptions specific to an analysis of covariance	466

Contents	
13.14 Alternatives when regressions differ	471
13.14.1 A two-factor scenario	471
13.14.2 The Johnson–Neyman technique	473
13.14.3 Comparisons of regressions	473
13.15 Extensions of analysis of covariance to other designs	474
13.15.1 More than one covariate	474
13.15.2 Non-linear relationships	475
13.15.3 More than one experimental factor	476
14 Conclusions: where to from here?	
14.1 Be logical, be eco-logical	478
14.2 Alternative models and hypotheses	478
14.3 Pilot experiments: all experiments are preliminary	480
14.4 Repeated experimentation	481
14.5 Criticisms and the growth of knowledge	481
	484
<i>References</i>	486
<i>Author index</i>	496
<i>Subject index</i>	499

Acknowledgements

The Australian Research Council have generously supported my research for 20 years. My long-time friend Howard Choat (University of Auckland and James Cook University), the World Aquaculture Congress (Halifax, Nova Scotia), Jim Clegg (Bodega Bay), Chris Battershill (NIWAR, New Zealand), Bob Kearney (Fisheries Research Institute, Sydney), Peter Scanes (EPA, Sydney), South Australian State Fisheries, the Tjärnö Marine Laboratory (twice) and the University of Stockholm (Sweden), Bob Vadas (University of Maine), Macquarie University (Sydney), the University of Évora (Portugal) and the Black Sea Environmental Program (Odessa, Ukraine) have all invited me to their institutions to learn how to teach. Bob Clarke (Plymouth), Mike Foster (Moss Landing), Roger Green (Western Ontario), John Gray (Oslo), Pete Peterson (North Carolina), Wayne Sousa (Berkeley) and Bob Vadas (Maine) encouraged discussion. David Fletcher (Otago) was particularly helpful with mathematical and statistical advice. My postgraduate students and postdoctoral researchers taught me about complex and interesting experiments.

My family, Anne, Clare and James were remarkable in putting up with this book. The mechanics were greatly aided by Sylvia Warren and Jenni Winzar (typing), Gee Chapman and Vanessa Mathews (figures), Tim Glasby (tables), Karen Astles (references), Greg Skilleter (keeping computers functioning). John Lawton and Susan Sternberg (Blackwells) initiated the book, but did not wish to publish it. Without Alan Crowden's and CUP's enthusiasm and encouragement, it would not have been finished.

More than for anyone else I know, my work has profited from the talents of several gifted women scientists. I am indebted to my friends Anne Underwood, Patsy Armati, Ros Hinde and Mary Peat for all of