

CONTENTS

Preface xv

1 Introduction 1

- 1.1 Groundwater, the Earth, and Man 2
 - GROUNDWATER AND THE HYDROLOGIC CYCLE 3
 - GROUNDWATER AS A RESOURCE 6
 - GROUNDWATER CONTAMINATION 8
 - GROUNDWATER AS A GEOTECHNICAL PROBLEM 9
 - GROUNDWATER AND GEOLGIC PROCESSES 10
- 1.2 The Scientific Foundations for the Study of Groundwater 10
- 1.3 The Technical Foundations for the Development of Groundwater Resources 12

2 Physical Properties and Principles 14

- 2.1 Darcy's Law 15
- 2.2 Hydraulic Head and Fluid Potential 18
 - HUBBERT'S ANALYSIS OF THE FLUID POTENTIAL 18
 - DIMENSIONS AND UNITS 22
 - PIEZOMETERS AND PIEZOMETER NETS 23
 - COUPLED FLOW 25
- 2.3 Hydraulic Conductivity and Permeability 26
- 2.4 Heterogeneity and Anisotropy of Hydraulic Conductivity 30
 - HOMOGENEITY AND HETEROGENEITY 30
 - ISOTROPY AND ANISOTROPY 32
 - DARCY'S LAW IN THREE DIMENSIONS 34
 - HYDRAULIC CONDUCTIVITY ELLIPSOID 35

2.5	Porosity and Void Ratio	36
2.6	Unsaturated Flow and the Water Table	38
	MOISTURE CONTENT	39
	WATER TABLE	39
	NEGATIVE PRESSURE HEADS AND TENSIOMETERS	39
	CHARACTERISTIC CURVES OF THE UNSATURATED HYDRAULIC PARAMETERS	41
	SATURATED, UNSATURATED, AND TENSION-SATURATED ZONES	44
	PERCHED AND INVERTED WATER TABLES	45
	MULTIPHASE FLOW	45
2.7	Aquifers and Aquitards	47
	AQUIFERS, AQUITARDS, AND AQUIINCLUDES	47
	CONFINED AND UNCONFINED AQUIFERS	48
	POTENTIOMETRIC SURFACE	49
2.8	Steady-State Flow and Transient Flow	49
2.9	Compressibility and Effective Stress	51
	COMPRESSIBILITY OF WATER	51
	EFFECTIVE STRESS	52
	COMPRESSIBILITY OF A POROUS MEDIUM	54
	AQUIFER COMPRESSIBILITY	56
	EFFECTIVE STRESS IN THE UNSATURATED ZONE	57
2.10	Transmissivity and Storativity	58
	SPECIFIC STORAGE	58
	TRANSMISSIVITY AND STORativity OF A CONFINED AQUIFER	59
	TRANSMISSIVITY AND SPECIFIC YIELD IN UNCONFINED AQUIFERS	61
	STORAGE IN THE UNSATURATED ZONE	62
2.11	Equations of Groundwater Flow	63
	STEADY-STATE SATURATED FLOW	63
	TRANSIENT SATURATED FLOW	64
	TRANSIENT UNSATURATED FLOW	66
	BOUNDARY-VALUE PROBLEMS	67
2.12	Limitations of the Darcian Approach	69
	DARCIAN CONTINUUM AND REPRESENTATIVE ELEMENTARY VOLUME	69
	SPECIFIC DISCHARGE, MACROSCOPIC VELOCITY, AND MICROSCOPIC	
	VELOCITY	70
	UPPER AND LOWER LIMITS OF DARCY'S LAW	72
	FLOW IN FRACTURED ROCKS	73
2.13	Hydrodynamic Dispersion	75

3 Chemical Properties and Principles 80

3.1	Groundwater and Its Chemical Constituents	82
	WATER AND ELECTROLYTES	82
	ORGANIC CONSTITUENTS	86
	DISSOLVED GASES	86
	CONCENTRATION UNITS	87
3.2	Chemical Equilibrium	89
	THE LAW OF MASS ACTION	89
	ACTIVITY COEFFICIENTS	90

	EQUILIBRIUM AND FREE ENERGY	90
	DISSOLVED GASES	95
3.3	Association and Dissociation of Dissolved Species	96
	THE ELECTRONEUTRALITY CONDITION	96
	DISSOCIATION AND ACTIVITY OF WATER	97
	POLYPROTIC ACIDS	98
	ION COMPLEXES	100
	CALCULATION OF DISSOLVED SPECIES	101
3.4	Effects of Concentration Gradients	103
3.5	Mineral Dissolution and Solubility	106
	SOLUBILITY AND THE EQUILIBRIUM CONSTANT	106
	EFFECT OF IONIC STRENGTH	107
	THE CARBONATE SYSTEM	108
	THE COMMON-ION EFFECT	112
	DISEQUILIBRIUM AND THE SATURATION INDEX	112
3.6	Oxidation and Reduction Processes	114
	OXIDATION STATES AND REDOX REACTIONS	114
	CONSUMPTION OF OXYGEN AND ORGANIC MATTER	117
	EQUILIBRIUM REDOX CONDITIONS	119
	MICROBIOLOGICAL FACTORS	121
	pE—pH DIAGRAMS	123
3.7	Ion Exchange and Adsorption	127
	MECHANISMS	127
	CATION EXCHANGE CAPACITY	128
	MASS-ACTION EQUATIONS	129
3.8	Environmental Isotopes	134
	CARBON-14	134
	TRITIUM	136
	OXYGEN AND DEUTERIUM	137
3.9	Field Measurement of Index Parameters	139

4 Groundwater Geology 144

4.1	Lithology, Stratigraphy, and Structure	145
4.2	Fluvial Deposits	147
4.3	Aeolian Deposits	149
4.4	Glacial Deposits	149
4.5	Sedimentary Rocks	152
	SANDSTONE	152
	CARBONATE ROCK	154
	COAL	157
	SHALE	158
4.6	Igneous and Metamorphic Rocks	158
4.7	Permafrost	163

5 Flow Nets 167

- 5.1 Flow Nets by Graphical Construction 168
 - HOMOGENEOUS, ISOTROPIC SYSTEMS 168
 - HETEROGENEOUS SYSTEMS AND THE TANGENT LAW 172
 - ANISOTROPIC SYSTEMS AND THE TRANSFORMED SECTION 174
- 5.2 Flow Nets by Analog Simulation 178
 - CONDUCTIVE-PAPER ANALOGS 179
 - RESISTANCE NETWORK ANALOGS 180
- 5.3 Flow Nets by Numerical Simulation 181
- 5.4 Saturated-Unsaturated Flow Nets 185
- 5.5 The Seepage Face and Dupuit Flow 186
 - SEEPAGE FACE, EXIT POINT, AND FREE SURFACE 186
 - DUPUIT-FORCHHEIMER THEORY OF FREE-SURFACE FLOW 188

6 Groundwater and the Hydrologic Cycle 192

- 6.1 Steady-State Regional Groundwater Flow 193
 - RECHARGE AREAS, DISCHARGE AREAS, AND GROUNDWATER DIVIDES 193
 - EFFECT OF TOPOGRAPHY ON REGIONAL FLOW SYSTEMS 195
 - EFFECT OF GEOLOGY ON REGIONAL FLOW SYSTEMS 197
 - FLOWING ARTESIAN WELLS 199
 - FLOW-SYSTEM MAPPING 200
- 6.2 Steady-State Hydrologic Budgets 203
 - QUANTITATIVE INTERPRETATION OF REGIONAL FLOW SYSTEMS 203
 - GROUNDWATER RECHARGE AND DISCHARGE AS COMPONENTS OF A HYDROLOGIC BUDGET 205
- 6.3 Transient Regional Groundwater Flow 208
- 6.4 Infiltration and Groundwater Recharge 211
 - THE THEORY OF INFILTRATION 211
 - MEASUREMENTS OF FIELD SITES 215
- 6.5 Hillslope Hydrology and Streamflow Generation 217
 - OVERLAND FLOW 218
 - SUBSURFACE STORMFLOW 219
 - CHEMICAL AND ISOTOPIC INDICATORS 221
- 6.6 Baseflow Recession and Bank Storage 225
- 6.7 Groundwater-Lake Interactions 226
- 6.8 Fluctuations in Groundwater Levels 229
 - EVAPOTRANSPIRATION AND PHREATOPHYTIC CONSUMPTION 231
 - AIR ENTRAPMENT DURING GROUNDWATER RECHARGE 231
 - ATMOSPHERIC PRESSURE EFFECTS 233
 - EXTERNAL LOADS 234
 - TIME LAG IN PIEZOMETERS 234

7 Chemical Evolution of Natural Groundwater 237

- 7.1 Hydrochemical Sequences and Facies 238
 - CHEMISTRY OF PRECIPITATION 238
 - CARBON DIOXIDE IN THE SOIL ZONE 240
 - MAJOR-ION EVOLUTION SEQUENCE 241
 - ELECTROCHEMICAL EVOLUTION SEQUENCE 244
- 7.2 Graphical Methods and Hydrochemical Facies 247
- 7.3 Groundwater in Carbonate Terrain 254
 - OPEN-SYSTEM DISSOLUTION 254
 - CLOSED-SYSTEM CONDITIONS 256
 - INCONGRUENT DISSOLUTION 257
 - OTHER FACTORS 259
 - INTERPRETATION OF CHEMICAL ANALYSES 261
- 7.4 Groundwater in Crystalline Rocks 268
 - THEORETICAL CONSIDERATIONS 269
 - LABORATORY EXPERIMENTS 273
 - INTERPRETATION OF FIELD DATA 275
- 7.5 Groundwater in Complex Sedimentary Systems 279
 - ORDER OF ENCOUNTER 280
 - WATER COMPOSITION IN GLACIAL DEPOSITS 284
 - GROUNDWATER IN STRATIFIED SEDIMENTARY ROCKS 286
- 7.6 Geochemical Interpretation of ^{14}C Dates 290
- 7.7 Membrane Effects in Deep Sedimentary Basins 292
- 7.8 Process Rates and Molecular Diffusion 295

8 Groundwater Resource Evaluation 303

- 8.1 Development of Groundwater Resources 304
 - EXPLORATION, EVALUATION, AND EXPLOITATION 304
 - WELL YIELD, AQUIFER YIELD, AND BASIN YIELD 305
- 8.2 Exploration for Aquifers 306
 - SURFACE GEOLOGICAL METHODS 306
 - SUBSURFACE GEOLOGICAL METHODS 307
 - SURFACE GEOPHYSICAL METHODS 308
 - SUBSURFACE GEOPHYSICAL METHODS 309
 - DRILLING AND INSTALLATION OF WELLS AND PIEZOMETERS 312
- 8.3 The Response of Ideal Aquifers to Pumping 314
 - RADIAL FLOW TO A WELL 315
 - THE THEIS SOLUTION 317
 - LEAKY AQUIFERS 320
 - UNCONFINED AQUIFERS 324
 - MULTIPLE-WELL SYSTEMS, STEPPED PUMPING RATES, WELL RECOVERY, AND PARTIAL PENETRATION 327
 - BOUNDED AQUIFERS 330
 - THE RESPONSE OF IDEAL AQUITARDS 332
 - THE REAL WORLD 334

8.4	Measurement of Parameters: Laboratory Tests	335
	HYDRAULIC CONDUCTIVITY	335
	POROSITY	337
	COMPRESSIBILITY	337
	UNSATURATED CHARACTERISTIC CURVES	339
8.5	Measurement of Parameters: Piezometer Tests	339
8.6	Measurement of Parameters: Pumping Tests	343
	LOG-LOG TYPE-CURVE MATCHING	343
	SEMILOG PLOTS	347
	ADVANTAGES AND DISADVANTAGES OF PUMPING TESTS	349
8.7	Estimation of Saturated Hydraulic Conductivity	350
8.8	Prediction of Aquifer Yield by Numerical Simulation	352
	FINITE-DIFFERENCE METHODS	352
	FINITE-ELEMENT METHODS	356
	MODEL CALIBRATION AND THE INVERSE PROBLEM	356
8.9	Prediction of Aquifer Yield by Analog Simulation	359
	ANALOGY BETWEEN ELECTRICAL FLOW AND GROUNDWATER FLOW	360
	RESISTANCE-CAPACITANCE NETWORK	361
	COMPARISON OF ANALOG AND DIGITAL SIMULATION	363
8.10	Basin Yield	364
	SAFE YIELD AND OPTIMAL YIELD OF A GROUNDWATER BASIN	364
	TRANSIENT HYDROLOGIC BUDGETS AND BASIN YIELD	365
8.11	Artificial Recharge and Induced Infiltration	367
8.12	Land Subsidence	370
	MECHANISM OF LAND SUBSIDENCE	370
	FIELD MEASUREMENT OF LAND SUBSIDENCE	373
8.13	Seawater Intrusion	375

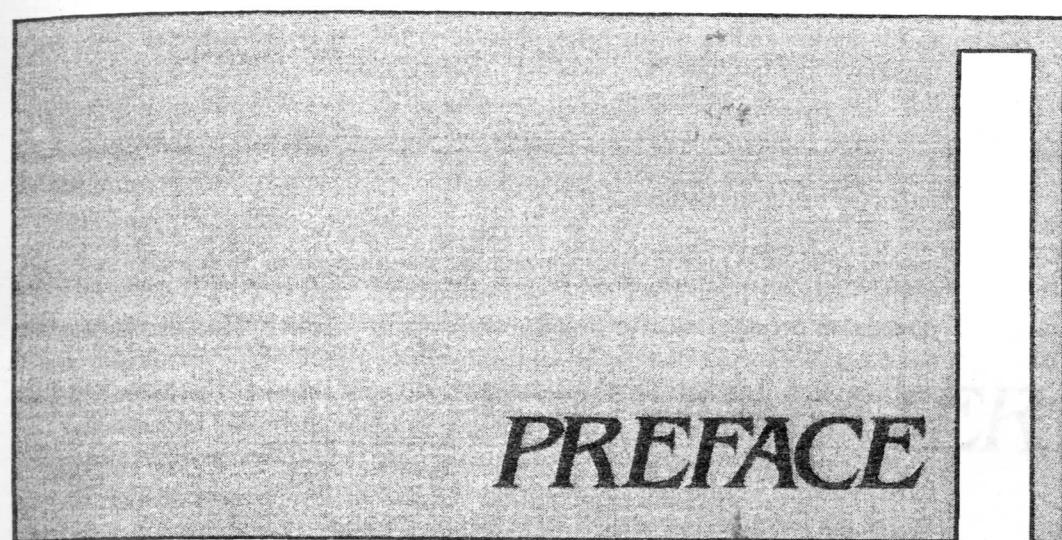
9 Groundwater Contamination 383

9.1	Water Quality Standards	385
9.2	Transport Processes	388
	NONREACTIVE CONSTITUENTS IN HOMOGENEOUS MEDIA	389
	NONREACTIVE CONSTITUENTS IN HETEROGENEOUS MEDIA	397
	TRANSPORT OF REACTIVE CONSTITUENTS	402
	TRANSPORT IN FRACTURED MEDIA	408
9.3	Hydrochemical Behavior of Contaminants	413
	NITROGEN	413
	TRACE METALS	416
	TRACE NONMETALS	420
	ORGANIC SUBSTANCES	424
9.4	Measurement of Parameters	426
	VELOCITY DETERMINATION	426
	DISPERSIVITY	430
	CHEMICAL PARTITIONING	432
9.5	Sources of Contamination	434
	LAND DISPOSAL OF SOLID WASTES	434
	SEWAGE DISPOSAL ON LAND	439

AGRICULTURAL ACTIVITIES	442
PETROLEUM LEAKAGE AND SPILLS	444
DISPOSAL OF RADIOACTIVE WASTE	447
DEEP-WELL DISPOSAL OF LIQUID WASTES	454
OTHER SOURCES	456

10 Groundwater and Geotechnical Problems 463

10.1	Pore Pressures, Landslides, and Slope Stability	464
	MOHR-COULOMB FAILURE THEORY	465
	LIMIT EQUILIBRIUM METHODS OF SLOPE STABILITY ANALYSIS	467
	EFFECT OF GROUNDWATER CONDITIONS ON SLOPE STABILITY IN SOILS	470
	EFFECT OF GROUNDWATER CONDITIONS ON SLOPE STABILITY IN ROCK	472
10.2	Groundwater and Dams	475
	TYPES OF DAMS AND DAM FAILURES	476
	SEEPAGE UNDER CONCRETE DAMS	477
	GROUTING AND DRAINAGE OF DAM FOUNDATIONS	479
	STEADY-STATE SEEPAGE THROUGH EARTH DAMS	481
	TRANSIENT SEEPAGE THROUGH EARTH DAMS	483
	HYDROGEOLOGIC IMPACT OF RESERVOIRS	485
10.3	Groundwater Inflows Into Tunnels	487
	A TUNNEL AS A STEADY-STATE OR TRANSIENT DRAIN	488
	HYDROGEOLOGIC HAZARDS OF TUNNELING	489
	PREDICTIVE ANALYSIS OF GROUNDWATER INFLOWS INTO TUNNELS	490
10.4	Groundwater Inflows Into Excavations	491
	DRAINAGE AND DEWATERING OF EXCAVATIONS	492
	PREDICTIVE ANALYSIS OF GROUNDWATER INFLOWS INTO EXCAVATIONS	494


11 Groundwater and Geologic Processes 497

11.1	Groundwater and Structural Geology	498
	HUBBERT-RUBEY THEORY OF OVERTHRUST FAULTING	498
	EARTHQUAKE PREDICTION AND CONTROL	500
11.2	Groundwater and Petroleum	502
	MIGRATION AND ACCUMULATION OF PETROLEUM	503
	HYDRODYNAMIC ENTRAPMENT OF PETROLEUM	504
	REGIONAL FLOW SYSTEMS AND PETROLEUM ACCUMULATIONS	506
	IMPLICATIONS FOR PETROLEUM EXPLORATION	507
11.3	Groundwater and Thermal Processes	507
	THERMAL REGIMES IN NATURAL GROUNDWATER FLOW SYSTEMS	508
	GEOTHERMAL SYSTEMS	510
	PLUTON EMPLACEMENT	512
11.4	Groundwater and Geomorphology	513
	KARST AND CAVES	513
	NATURAL SLOPE DEVELOPMENT	515
	FLUVIAL PROCESSES	516
	GLACIAL PROCESSES	517

11.5	Groundwater and Economic Mineralization	519
	GENESIS OF ECONOMIC MINERAL DEPOSITS	519
	IMPLICATIONS FOR GEOCHEMICAL EXPLORATION	521

Appendices 525

I	Elements of Fluid Mechanics	526
II	Equation of Flow for Transient Flow Through Deforming Saturated Media	531
III	Example of an Analytical Solution to a Boundary-Value Problem	534
IV	Debye-Hückel Equation and Kieland Table for Ion-Activity Coefficients	536
V	Complementary Error Function (erfc)	539
VI	Development of Finite-Difference Equation for Steady-State Flow in a Homogeneous, Isotropic Medium	540
VII	Tóth's Analytical Solution for Regional Groundwater Flow	542
VIII	Numerical Solution of the Boundary-Value Problem Representing One-Dimensional Infiltration Above a Recharging Groundwater Flow System	544
IX	Development of Finite-Difference Equation for Transient Flow in a Heterogeneous, Anisotropic, Horizontal, Confined Aquifer	546
X	Derivation of the Advection-Dispersion Equation for Solute Transport in Saturated Porous Media	549
References 555		
Index 589		

PREFACE

We perceive a trend in the study and practice of groundwater hydrology. We see a science that is emerging from its geological roots and its early hydraulic applications into a full-fledged environmental science. We see a science that is becoming more interdisciplinary in nature and of greater importance in the affairs of man.

This book is our response to these perceived trends. We have tried to provide a text that is suited to the study of groundwater during this period of emergence. We have made a conscious attempt to integrate geology and hydrology, physics and chemistry, and science and engineering to a greater degree than has been done in the past.

This book is designed for use as a text in introductory groundwater courses of the type normally taught in the junior or senior year of undergraduate geology, geological engineering, or civil engineering curricula. It has considerably more material than can be covered in a course of one-semester duration. Our intention is to provide a broad coverage of groundwater topics in a manner that will enable course instructors to use selected chapters or chapter segments as a framework for a semester-length treatment. The remaining material can serve as a basis for a follow-up undergraduate course with more specialization or as source material for an introductory course at the graduate level. We recognize that the interdisciplinary approach may create some difficulties for students grounded only in the earth sciences, but we are convinced that the benefits of the approach far outweigh the cost of the additional effort that is required.

The study of groundwater at the introductory level requires an understanding of many of the basic principles of geology, physics, chemistry, and mathematics. This text is designed for students who have a knowledge of these subjects at the level normally covered in freshman university courses. Additional background in these subjects is, of course, desirable. Elementary calculus is used frequently in several of the chapters. Although knowledge of topics of more advanced calculus is definitely an asset to students wishing to pursue specialized groundwater topics, we hope that for students without this background this text will serve as a pathway