

CONTENTS

Preface

v

Part I THE MOLECULAR DESIGN OF LIFE

Chapter 1 Biochemistry: An Evolving Science 1

1.1 Biochemical Unity Underlies Biological Diversity 1	1
1.2 DNA Illustrates the Interplay Between Form and Function 4	4
DNA is constructed from four building blocks	5
Two single strands of DNA combine to form a double helix	5
DNA structure explains heredity and the storage of information	5
1.3 Concepts from Chemistry Explain the Properties of Biological Molecules 6	6
The double helix can form from its component strands	6
Covalent and noncovalent bonds are important for the structure and stability of biological molecules	7
The double helix is an expression of the rules of chemistry	10
The laws of thermodynamics govern the behavior of biochemical systems	11
Heat is released in the formation of the double helix	12
Acid-base reactions are central in many biochemical processes	13
Acid-base reactions can disrupt the double helix	14
Buffers regulate pH in organisms and in the laboratory	15

Part II TRANSDUCING AND STORING ENERGY

15 Metabolism: Basic Concepts and Design 427	
16 Glycolysis and Gluconeogenesis 453	
17 The Citric Acid Cycle 497	
18 Oxidative Phosphorylation 525	
19 The Light Reactions of Photosynthesis 565	
20 The Calvin Cycle and the Pentose Phosphate Pathway 589	
21 Glycogen Metabolism 615	
22 Fatty Acid Metabolism 639	
23 Protein Turnover and Amino Acid Catabolism 673	

Part III SYNTHESIZING THE MOLECULES OF LIFE

24 The Biosynthesis of Amino Acids 705	
25 Nucleotide Biosynthesis 735	
26 The Biosynthesis of Membrane Lipids and Steroids 759	
27 The Integration of Metabolism 791	
28 DNA Replication, Repair, and Recombination 819	
29 RNA Synthesis and Processing 851	
30 Protein Synthesis 887	
31 The Control of Gene Expression in Prokaryotes 921	
32 The Control of Gene Expression in Eukaryotes 937	

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

33 Sensory Systems 957	
34 The Immune System 977	
35 Molecular Motors 1007	
36 Drug Development 1029	

BRIEF CONTENTS

Scott Stagg	
Florida State University	
Wesley Stites	
University of Arkansas, Fayetteville	
Paul Straight	
Texas A&M University	
Gerald Stubbs	
Vanderbilt University	
Takita Felder Sumter	
Winthrop University	
Jeremy Thorner	
University of California, Berkeley	

Liang Tong	
Columbia University	
Kenneth Traxler	
Bemidji State University	
Peter Van Der Geer	
San Diego State University	
Nagarajan Vasumathi	
Jacksonville State University	
Stefan Vetter	
Florida Atlantic University	
Edward Walker	
Weber State University	

Xuemin Wang	
University of Missouri, St. Louis	
Kevin Williams	
Western Kentucky University	
Warren Williams	
University of British Columbia	
Shiyong Wu	
Ohio University	
Laura Zapanta	
University of Pittsburgh	

Three of us have had the pleasure of working with the folks at W. H. Freeman and Company on a number of projects, whereas one of us is new to the Freeman family. Our experiences have always been delightful and rewarding. Writing and producing the seventh edition of *Biochemistry* was no exception. The Freeman team has a knack for undertaking stressful, but exhilarating, projects and reducing the stress without reducing the exhilaration and a remarkable ability to coax without ever nagging. We have many people to thank for this experience. First, we would like to acknowledge the encouragement, patience, excellent advice, and good humor of Kate Ahr Parker, Publisher. Her enthusiasm is source of energy for all of us. Lisa Samols is our wonderful developmental editor. Her insight, patience, and understanding contributed immensely to the success of this project. Beth Howe and Erica Champion assisted Lisa by developing several chapters, and we are grateful to them for their help. Georgia Lee Hadler, Senior Project Editor, managed the flow of the entire project, from copyediting through bound book, with her usual admirable efficiency. Patricia Zimmerman and Nancy Brooks, our manuscript editors, enhanced the literary consistency and clarity of the text. Vicki Tomaselli, Design Manager, produced a design and layout that makes the book exciting and eye-catching while maintaining the link to past editions. Photo Editor Christine Beuse and Photo Researcher Jacalyn Wong found the photographs that we hope make the text more inviting. Janice Donnola, Illustration

Coordinator, deftly directed the rendering of new illustrations. Paul Rohloff, Production Coordinator, made sure that the significant difficulties of scheduling, composition, and manufacturing were smoothly overcome. Andrea Gawrylewski, Patrick Shriner, Marni Rolfs, and Rohit Phillip did a wonderful job in their management of the media program. Amanda Dunning ably coordinated the print supplements plan. Special thanks also to editorial assistant Anna Bristow. Debbie Clare, Associate Director of Marketing, enthusiastically introduced this newest edition of *Biochemistry* to the academic world. We are deeply appreciative of the sales staff for their enthusiastic support. Without them, all of our excitement and enthusiasm would ultimately come to naught. Finally, we owe a deep debt of gratitude to Elizabeth Widdicombe, President of W. H. Freeman and Company. Her vision for science textbooks and her skill at gathering exceptional personnel make working with W. H. Freeman and Company a true pleasure.

Thanks also to our many colleagues at our own institutions as well as throughout the country who patiently answered our questions and encouraged us on our quest. Finally, we owe a debt of gratitude to our families—our wives, Wendie Berg, Alison Unger, and Megan Williams, and our children, Alex, Corey, and Monica Berg, Janina and Nicholas Tymoczko, and Timothy and Mark Gatto. Without their support, comfort, and understanding, this endeavor could never have been undertaken, let alone successfully completed.

xiv

2.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha Helix, the Beta Sheet, and Turns and Loops

The alpha helix is a coiled structure stabilized by intrachain hydrogen bonds
Beta sheets are stabilized by hydrogen bonding between polypeptide strands
Polypeptide chains can change direction by making reverse turns and loops
Fibrous proteins provide structural support for cells and tissues

2.4 Tertiary Structure: Water-Soluble Proteins Fold into Compact Structures with Nonpolar Cores

2.5 Quaternary Structure: Polypeptide Chains Can Assemble into Multisubunit Structures

2.6 The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure

Amino acids have different propensities for forming alpha helices, beta sheets, and beta turns
Protein folding is a highly cooperative process
Proteins fold by progressive stabilization of intermediates rather than by random search
Prediction of three-dimensional structure from sequence remains a great challenge

Some proteins are inherently unstructured and can exist in multiple conformations

Protein misfolding and aggregation are associated with some neurological diseases

Protein modification and cleavage confer new capabilities

APPENDIX: Visualizing Molecular Structures II: Proteins

Chapter 3 Exploring Proteins and Proteomes

The proteome is the functional representation of the genome

3.1 The Purification of Proteins Is an Essential First Step in Understanding Their Function

The assay: How do we recognize the protein that we are looking for?

Proteins must be released from the cell to be purified

Proteins can be purified according to solubility, size, charge, and binding affinity

Proteins can be separated by gel electrophoresis and displayed

A protein purification scheme can be quantitatively evaluated

Ultracentrifugation is valuable for separating biomolecules and determining their masses

Protein purification can be made easier with the use of recombinant DNA technology

3.2 Amino Acid Sequences of Proteins Can Be Determined Experimentally

Peptide sequences can be determined by automated Edman degradation

Proteins can be specifically cleaved into small peptides to facilitate analysis

Genomic and proteomic methods are complementary

3.3 Immunology Provides Important Techniques with Which to Investigate Proteins

Antibodies to specific proteins can be generated

Monoclonal antibodies with virtually any desired specificity can be readily prepared

Proteins can be detected and quantified by using an enzyme-linked immunosorbent assay

Western blotting permits the detection of proteins separated by gel electrophoresis

Fluorescent markers make the visualization of proteins in the cell possible

3.4 Mass Spectrometry Is a Powerful Technique for the Identification of Peptides and Proteins

The mass of a protein can be precisely determined by mass spectrometry

Peptides can be sequenced by mass spectrometry

Individual proteins can be identified by mass spectrometry

3.5 Peptides Can Be Synthesized by Automated Solid-Phase Methods

3.6 Three-Dimensional Protein Structure Can Be Determined by X-ray Crystallography and NMR Spectroscopy

X-ray crystallography reveals three-dimensional structure in atomic detail

Nuclear magnetic resonance spectroscopy can reveal the structures of proteins in solution

Some DNA molecules are circular and supercoiled
Single-stranded nucleic acids can adopt elaborate structures

4.3 The Double Helix Facilitates the Accurate Transmission of Hereditary Information

Differences in DNA density established the validity of the semiconservative-replication hypothesis

The double helix can be reversibly melted

4.4 DNA Is Replicated by Polymerases That Take Instructions from Templates

DNA polymerase catalyzes phosphodiester-bridge formation

The genes of some viruses are made of RNA

4.5 Gene Expression Is the Transformation of DNA Information into Functional Molecules

Several kinds of RNA play key roles in gene expression

All cellular RNA is synthesized by RNA polymerases

RNA polymerases take instructions from DNA templates

Transcription begins near promoter sites and ends at terminator sites

Transfer RNAs are the adaptor molecules in protein synthesis

4.6 Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point

Major features of the genetic code

Messenger RNA contains start and stop signals for protein synthesis

The genetic code is nearly universal

4.7 Most Eukaryotic Genes Are Mosaics of Introns and Exons

RNA processing generates mature RNA

Many exons encode protein domains

5.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology

Restriction enzymes and DNA ligase are key tools in forming recombinant DNA molecules

Plasmids and lambda phage are choice vectors for DNA cloning in bacteria

Bacterial and yeast artificial chromosomes

Specific genes can be cloned from digests of genomic DNA

Complementary DNA prepared from mRNA can be expressed in host cells

Proteins with new functions can be created through directed changes in DNA

Recombinant methods enable the exploration of the functional effects of disease-causing mutations

5.3 Complete Genomes Have Been Sequenced and Analyzed

The genomes of organisms ranging from bacteria to multicellular eukaryotes have been sequenced

The sequencing of the human genome has been finished

Next-generation sequencing methods enable the rapid determination of a whole genome sequence

Comparative genomics has become a powerful research tool

5.4 Eukaryotic Genes Can Be Quantitated and Manipulated with Considerable Precision

Gene-expression levels can be comprehensively examined

New genes inserted into eukaryotic cells can be efficiently expressed

Transgenic animals harbor and express genes introduced into their germ lines

Gene disruption provides clues to gene function

RNA interference provides an additional tool for disrupting gene expression

Tumor-inducing plasmids can be used to introduce new genes into plant cells

Human gene therapy holds great promise for medicine

Chapter 5 Exploring Genes and Genomes

5.1 The Exploration of Genes Relies on Key Tools

Restriction enzymes split DNA into specific fragments

Restriction fragments can be separated by gel electrophoresis and visualized

DNA can be sequenced by controlled termination of replication

DNA probes and genes can be synthesized by automated solid-phase methods

Selected DNA sequences can be greatly amplified by the polymerase chain reaction

PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution

The tools for recombinant DNA technology have been used to identify disease-causing mutations

139

140

141

142

143

144

145

146

147

Chapter 6 Exploring Evolution and Bioinformatics

6.1 Homologs Are Descended from a Common Ancestor

6.2 Statistical Analysis of Sequence Alignments Can Detect Homology

The statistical significance of alignments can be estimated by shuffling

Distant evolutionary relationships can be detected through the use of substitution matrices

Databases can be searched to identify homologous sequences

173

174

175

177

178

181

6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary Relationships	182	Additional globins are encoded in the human genome	211
Tertiary structure is more conserved than primary structure		APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: the Hill Plot and the Concerted Model	213
Knowledge of three-dimensional structures can aid in the evaluation of sequence alignments	183		
Repeated motifs can be detected by aligning sequences with themselves	184		
Convergent evolution illustrates common solutions to biochemical challenges	184		
Comparison of RNA sequences can be a source of insight into RNA secondary structures	185	Many enzymes require cofactors for activity	221
6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information	187	Enzymes can transform energy from one form into another	221
6.5 Modern Techniques Make the Experimental Exploration of Evolution Possible	188		
Ancient DNA can sometimes be amplified and sequenced	188	8.2 Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes	222
Molecular evolution can be examined experimentally	189	The free-energy change provides information about the spontaneity but not the rate of a reaction	222
		The standard free-energy change of a reaction is related to the equilibrium constant	223
		Enzymes alter only the reaction rate and not the reaction equilibrium	224
Chapter 7 Hemoglobin: Portrait of a Protein in Action	195	8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State	225
7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme	196	The formation of an enzyme–substrate complex is the first step in enzymatic catalysis	226
Changes in heme electronic structure upon oxygen binding are the basis for functional imaging studies	197	The active sites of enzymes have some common features	227
The structure of myoglobin prevents the release of reactive oxygen species	198	The binding energy between enzyme and substrate is important for catalysis	229
Human hemoglobin is an assembly of four myoglobin-like subunits	199	8.4 The Michaelis–Menten Equation Describes the Kinetic Properties of Many Enzymes	229
7.2 Hemoglobin Binds Oxygen Cooperatively	201	Kinetics is the study of reaction rates	229
Oxygen binding markedly changes the quaternary structure of hemoglobin	202	The steady-state assumption facilitates a description of enzyme kinetics	230
Hemoglobin cooperativity can be potentially explained by several models	204	Variations in K_M can have physiological consequences	232
Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1$ – $\alpha_2\beta_2$ interface	204	K_M and V_{max} values can be determined by several means	232
2,3-Bisphosphoglycerate in red cells is crucial in determining the oxygen affinity of hemoglobin	205	K_M and V_{max} values are important enzyme characteristics	233
Carbon monoxide can disrupt oxygen transport by hemoglobin	205	k_{cat}/K_M is a measure of catalytic efficiency	234
7.3 Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect	206	Most biochemical reactions include multiple substrates	235
7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease	208	Allosteric enzymes do not obey Michaelis–Menten kinetics	237
Sickle-cell anemia results from the aggregation of mutated deoxyhemoglobin molecules	209	8.5 Enzymes Can Be Inhibited by Specific Molecules	238
Thalassemia is caused by an imbalanced production of hemoglobin chains	210	Reversible inhibitors are kinetically distinguishable	239
The accumulation of free alpha-hemoglobin chains is prevented	211	Irreversible inhibitors can be used to map the active site	241
		Transition-state analogs are potent inhibitors of enzymes	243
		Catalytic antibodies demonstrate the importance of selective binding of the transition state to enzymatic activity	243
		Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis	244

8.6 Enzymes Can Be Studied One Molecule at a Time	246	The altered conformation of myosin persists for a substantial period of time	282
APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze	248	Myosins are a family of enzymes containing P-loop structures	283
<hr/>			
Chapter 9 Catalytic Strategies	253	Chapter 10 Regulatory Strategies	289
A few basic catalytic principles are used by many enzymes	254	10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	290
9.1 Proteases Facilitate a Fundamentally Difficult Reaction	255	Allosterically regulated enzymes do not follow Michaelis–Menten kinetics	291
Chymotrypsin possesses a highly reactive serine residue	255	ATCase consists of separable catalytic and regulatory subunits	291
Chymotrypsin action proceeds in two steps linked by a covalently bound intermediate	256	Allosteric interactions in ATCase are mediated by large changes in quaternary structure	292
Serine is part of a catalytic triad that also includes histidine and aspartate	257	Allosteric regulators modulate the T-to-R equilibrium	295
Catalytic triads are found in other hydrolytic enzymes	260	10.2 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental Stages	296
The catalytic triad has been dissected by site-directed mutagenesis	262	10.3 Covalent Modification Is a Means of Regulating Enzyme Activity	297
Cysteine, aspartyl, and metalloproteases are other major classes of peptide-cleaving enzymes	263	Kinases and phosphatases control the extent of protein phosphorylation	298
Protease inhibitors are important drugs	264	Phosphorylation is a highly effective means of regulating the activities of target proteins	300
9.2 Carbonic Anhydrases Make a Fast Reaction Faster	266	Cyclic AMP activates protein kinase A by altering the quaternary structure	301
Carbonic anhydrase contains a bound zinc ion essential for catalytic activity	267	ATP and the target protein bind to a deep cleft in the catalytic subunit of protein kinase A	302
Catalysis entails zinc activation of a water molecule	268	10.4 Many Enzymes Are Activated by Specific Proteolytic Cleavage	302
A proton shuttle facilitates rapid regeneration of the active form of the enzyme	269	Chymotrypsinogen is activated by specific cleavage of a single peptide bond	303
Convergent evolution has generated zinc-based active sites in different carbonic anhydrases	271	Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site	304
9.3 Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions	271	The generation of trypsin from trypsinogen leads to the activation of other zymogens	305
Cleavage is by in-line displacement of 3'-oxygen from phosphorus by magnesium-activated water	272	Some proteolytic enzymes have specific inhibitors	306
Restriction enzymes require magnesium for catalytic activity	274	Blood clotting is accomplished by a cascade of zymogen activations	307
The complete catalytic apparatus is assembled only within complexes of cognate DNA molecules, ensuring specificity	275	Fibrinogen is converted by thrombin into a fibrin clot	308
Host-cell DNA is protected by the addition of methyl groups to specific bases	277	Prothrombin is readied for activation by a vitamin K-dependent modification	310
Type II restriction enzymes have a catalytic core in common and are probably related by horizontal gene transfer	278	Hemophilia revealed an early step in clotting	311
9.4 Myosins Harness Changes in Enzyme Conformation to Couple ATP Hydrolysis to Mechanical Work	279	The clotting process must be precisely regulated	311
ATP hydrolysis proceeds by the attack of water on the gamma-phosphoryl group	279	<hr/>	319
Formation of the transition state for ATP hydrolysis is associated with a substantial conformational change	280	Chapter 11 Carbohydrates	319
11.1 Monosaccharides Are the Simplest Carbohydrates	320	11.1 Monosaccharides Are the Simplest Carbohydrates	320
Many common sugars exist in cyclic forms	322	Many common sugars exist in cyclic forms	322
Pyranose and furanose rings can assume different conformations	324	Pyranose and furanose rings can assume different conformations	324

Glucose is a reducing sugar	325	A membrane lipid is an amphipathic molecule containing a hydrophilic and a hydrophobic moiety	351	Insulin binding results in the cross-phosphorylation and activation of the insulin receptor	412
Monosaccharides are joined to alcohols and amines through glycosidic bonds	326	12.3 Phospholipids and Glycolipids Readily Form Bimolecular Sheets in Aqueous Media	352	The activated insulin-receptor kinase initiates a kinase cascade	412
Phosphorylated sugars are key intermediates in energy generation and biosyntheses	326	Lipid vesicles can be formed from phospholipids	353	Insulin signaling is terminated by the action of phosphatases	415
11.2 Monosaccharides Are Linked to Form Complex Carbohydrates	327	Lipid bilayers are highly impermeable to ions and most polar molecules	354		
Sucrose, lactose, and maltose are the common disaccharides	327	12.4 Proteins Carry Out Most Membrane Processes	355	14.3 EGF Signaling: Signal-Transduction Pathways Are Poised to Respond	415
Glycogen and starch are storage forms of glucose	328	Proteins associate with the lipid bilayer in a variety of ways	355	EGF binding results in the dimerization of the EGF receptor	415
Cellulose, a structural component of plants, is made of chains of glucose	328	Proteins interact with membranes in a variety of ways	356	The EGF receptor undergoes phosphorylation of its carboxyl-terminal tail	417
11.3 Carbohydrates Can Be Linked to Proteins to Form Glycoproteins	329	Some proteins associate with membranes through covalently attached hydrophobic groups	359	EGF signaling leads to the activation of Ras, a small G protein	417
Carbohydrates can be linked to proteins through asparagine (N-linked) or through serine or threonine (O-linked) residues	330	Transmembrane helices can be accurately predicted from amino acid sequences	359	Activated Ras initiates a protein kinase cascade	418
The glycoprotein erythropoietin is a vital hormone	330	12.5 Lipids and Many Membrane Proteins Diffuse Rapidly in the Plane of the Membrane	361	EGF signaling is terminated by protein phosphatases and the intrinsic GTPase activity of Ras	418
Proteoglycans, composed of polysaccharides and protein, have important structural roles	331	The fluid mosaic model allows lateral movement but not rotation through the membrane	362	14.4 Many Elements Recur with Variation in Different Signal-Transduction Pathways	419
Proteoglycans are important components of cartilage	332	Membrane fluidity is controlled by fatty acid composition and cholesterol content	362	14.5 Defects in Signal-Transduction Pathways Can Lead to Cancer and Other Diseases	420
Mucins are glycoprotein components of mucus	333	Lipid rafts are highly dynamic complexes formed between cholesterol and specific lipids	363	Monoclonal antibodies can be used to inhibit signal-transduction pathways activated in tumors	420
Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the Golgi complex	335	All biological membranes are asymmetric	363	Protein kinase inhibitors can be effective anticancer drugs	421
Specific enzymes are responsible for oligosaccharide assembly	335	12.6 Eukaryotic Cells Contain Compartments Bounded by Internal Membranes	364	Cholera and whooping cough are due to altered G-protein activity	421
Blood groups are based on protein glycosylation patterns	336				
Errors in glycosylation can result in pathological conditions	336				
Oligosaccharides can be “sequenced”	336				
11.4 Lectins Are Specific Carbohydrate-Binding Proteins	337	Chapter 13 Membrane Channels and Pumps	371	Part II TRANSDUCING AND STORING ENERGY	
Lectins promote interactions between cells	338	The expression of transporters largely defines the metabolic activities of a given cell type	372	Chapter 15 Metabolism: Basic Concepts and Design	427
Lectins are organized into different classes	338	13.1 The Transport of Molecules Across a Membrane May Be Active or Passive	372		
Influenza virus binds to sialic acid residues	339	Many molecules require protein transporters to cross membranes	372		
Chapter 12 Lipids and Cell Membranes	345	Free energy stored in concentration gradients can be quantified	373	15.1 Metabolism Is Composed of Many Coupled, Interconnecting Reactions	428
Many common features underlie the diversity of biological membranes	346	13.2 Two Families of Membrane Proteins Use ATP Hydrolysis to Pump Ions and Molecules Across Membranes	374	Metabolism consists of energy-yielding and energy-requiring reactions	428
12.1 Fatty Acids Are Key Constituents of Lipids	346	P-type ATPases couple phosphorylation and conformational changes to pump calcium ions across membranes	374	A thermodynamically unfavorable reaction can be driven by a favorable reaction	429
Fatty acid names are based on their parent hydrocarbons	347	Digitalis specifically inhibits the $\text{Na}^+ - \text{K}^+$ pump by blocking its dephosphorylation	374	15.2 ATP Is the Universal Currency of Free Energy in Biological Systems	430
Fatty acids vary in chain length and degree of unsaturation	348	P-type ATPases are evolutionarily conserved and play a wide range of roles	377	ATP hydrolysis is exergonic	430
12.2 There Are Three Common Types of Membrane Lipids	348	Multidrug resistance highlights a family of membrane pumps with ATP-binding cassette domains	378	ATP hydrolysis drives metabolism by shifting the equilibrium of coupled reactions	431
Phospholipids are the major class of membrane lipids	349			The high phosphoryl potential of ATP results from structural differences between ATP and its hydrolysis products	433
Membrane lipids can include carbohydrate moieties	349			Phosphoryl-transfer potential is an important form of cellular energy transformation	434
Cholesterol is a lipid based on a steroid nucleus	350				
Archaeal membranes are built from ether lipids with branched chains	350				

15.3 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	435	Many adults are intolerant of milk because they are deficient in lactase	471	Mechanism: The mechanism of citrate synthase prevents undesirable reactions	504	Ubiquinol is the entry point for electrons from FADH ₂ of flavoproteins	535
Compounds with high phosphoryl-transfer potential can couple carbon oxidation to ATP synthesis		Galactose is highly toxic if the transferase is missing	472	Citrate is isomerized into isocitrate	506	Electrons flow from ubiquinol to cytochrome c through Q-cytochrome c oxidoreductase	535
Ion gradients across membranes provide an important form of cellular energy that can be coupled to ATP synthesis		16.2 The Glycolytic Pathway Is Tightly Controlled	472	Isocitrate is oxidized and decarboxylated to alpha-ketoglutarate	506	The Q cycle funnels electrons from a two-electron carrier to a one-electron carrier and pumps protons	536
Energy from foodstuffs is extracted in three stages		Glycolysis in muscle is regulated to meet the need for ATP	473	Succinyl coenzyme A is formed by the oxidative decarboxylation of alpha-ketoglutarate	507	Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water	537
15.4 Metabolic Pathways Contain Many Recurring Motifs	436	The regulation of glycolysis in the liver illustrates the biochemical versatility of the liver	474	A compound with high phosphoryl-transfer potential is generated from succinyl coenzyme A	507	Toxic derivatives of molecular oxygen such as superoxide radical are scavenged by protective enzymes	540
Activated carriers exemplify the modular design and economy of metabolism		A family of transporters enables glucose to enter and leave animal cells	477	Mechanism: Succinyl coenzyme A synthetase transforms types of biochemical energy	508	Electrons can be transferred between groups that are not in contact	542
Many activated carriers are derived from vitamins		Cancer and exercise training affect glycolysis in a similar fashion	478	Oxaloacetate is regenerated by the oxidation of succinate	509	The conformation of cytochrome c has remained essentially constant for more than a billion years	543
Key reactions are reiterated throughout metabolism		16.3 Glucose Can Be Synthesized from Noncarbohydrate Precursors	479	The citric acid cycle produces high-transfer-potential electrons, ATP, and CO ₂	510	18.4 A Proton Gradient Powers the Synthesis of ATP	543
Metabolic processes are regulated in three principal ways		Gluconeogenesis is not a reversal of glycolysis	481	17.3 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled	512	ATP synthase is composed of a proton-conducting unit and a catalytic unit	545
Aspects of metabolism may have evolved from an RNA world		The conversion of pyruvate into phosphoenolpyruvate begins with the formation of oxaloacetate	482	Proton flow through ATP synthase leads to the release of tightly bound ATP: The binding-change mechanism	546		
Chapter 16 Glycolysis and Gluconeogenesis	453	Oxaloacetate is shuttled into the cytoplasm and converted into phosphoenolpyruvate	483	Rotational catalysis is the world's smallest molecular motor	547		
Glucose is generated from dietary carbohydrates	454	The conversion of fructose 1,6-bisphosphate into fructose 6-phosphate and orthophosphate is an irreversible step	484	Proton flow around the c ring powers ATP synthesis	548		
Glucose is an important fuel for most organisms	455	The generation of free glucose is an important control point	484	ATP synthase and G proteins have several common features	549		
16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms	455	Six high-transfer-potential phosphoryl groups are spent in synthesizing glucose from pyruvate	485	18.5 Many Shuttles Allow Movement Across Mitochondrial Membranes	550		
Hexokinase traps glucose in the cell and begins glycolysis		16.4 Gluconeogenesis and Glycolysis Are Reciprocally Regulated	486	Electrons from cytoplasmic NADH enter mitochondria by shuttles	551		
Fructose 1,6-bisphosphate is generated from glucose 6-phosphate		Energy charge determines whether glycolysis or gluconeogenesis will be most active	486	The entry of ADP into mitochondria is coupled to the exit of ATP by ATP-ADP translocase	552		
The six-carbon sugar is cleaved into two three-carbon fragments		The balance between glycolysis and gluconeogenesis in the liver is sensitive to blood-glucose concentration	487	Mitochondrial transporters for metabolites have a common tripartite structure	553		
Mechanism: Triose phosphate isomerase salvages a three-carbon fragment		Substrate cycles amplify metabolic signals and produce heat	489	18.6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP	554		
The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential		Lactate and alanine formed by contracting muscle are used by other organs	489	The complete oxidation of glucose yields about 30 molecules of ATP	554		
Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate		Glycolysis and gluconeogenesis are evolutionarily intertwined	491	The rate of oxidative phosphorylation is determined by the need for ATP	555		
ATP is formed by phosphoryl transfer from 1,3-bisphosphoglycerate		Chapter 17 The Citric Acid Cycle	497	Regulated uncoupling leads to the generation of heat	556		
Additional ATP is generated with the formation of pyruvate		The citric acid cycle harvests high-energy electrons	498	Oxidative phosphorylation can be inhibited at many stages	558		
Two ATP molecules are formed in the conversion of glucose into pyruvate		17.1 Pyruvate Dehydrogenase Links Glycolysis to the Citric Acid Cycle	499	Mitochondrial diseases are being discovered	558		
NAD ⁺ is regenerated from the metabolism of pyruvate		Mechanism: The synthesis of acetyl coenzyme A from pyruvate requires three enzymes and five coenzymes	500	Mitochondria play a key role in apoptosis	559		
Fermentations provide usable energy in the absence of oxygen		Flexible linkages allow lipoamide to move between different active sites	502	Power transmission by proton gradients is a central motif of bioenergetics	559		
The binding site for NAD ⁺ is similar in many dehydrogenases		17.2 The Citric Acid Cycle Oxidizes Two-Carbon Units	503	Chapter 19 The Light Reactions of Photosynthesis	565		
Fructose and galactose are converted into glycolytic intermediates		Citrate synthase forms citrate from oxaloacetate and acetyl coenzyme A	504	Photosynthesis converts light energy into chemical energy	566		
				19.1 Photosynthesis Takes Place in Chloroplasts	567		
				The primary events of photosynthesis take place in thylakoid membranes	567		
				Chloroplasts arose from an endosymbiotic event	568		

19.2 Light Absorption by Chlorophyll Induces Electron Transfer	568	20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions	597	21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation	621	The complete oxidation of palmitate yields 106 molecules of ATP	647		
A special pair of chlorophylls initiate charge separation	569	Rubisco is activated by light-driven changes in proton and magnesium ion concentrations	598	Muscle phosphorylase is regulated by the intracellular energy charge	621				
Cyclic electron flow reduces the cytochrome of the reaction center	572	Thioredoxin plays a key role in regulating the Calvin cycle	598	Liver phosphorylase produces glucose for use by other tissues	623	An isomerase and a reductase are required for the oxidation of unsaturated fatty acids	648		
19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic Photosynthesis	572	The C ₄ pathway of tropical plants accelerates photosynthesis by concentrating carbon dioxide	599	Phosphorylase kinase is activated by phosphorylation and calcium ions	623	Odd-chain fatty acids yield propionyl CoA in the final thiolysis step	649		
Photosystem II transfers electrons from water to plastoquinone and generates a proton gradient	572	Crassulacean acid metabolism permits growth in arid ecosystems	600	21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown	624	Vitamin B ₁₂ contains a corrin ring and a cobalt atom	650		
Cytochrome <i>bf</i> links photosystem II to photosystem I	575	20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars	601	Mechanism: Methylmalonyl CoA mutase catalyzes a rearrangement to form succinyl CoA	624	Mechanism: Methylmalonyl CoA mutase catalyzes a rearrangement to form succinyl CoA	651		
Photosystem I uses light energy to generate reduced ferredoxin, a powerful reductant	575	Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose 5-phosphate	601	Fatty acids are also oxidized in peroxisomes	652	Fatty acids are also oxidized in peroxisomes	652		
Ferredoxin–NADP ⁺ reductase converts NADP ⁺ into NADPH	576	The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase	601	Ketone bodies are formed from acetyl CoA when fat breakdown predominates	653	Ketone bodies are formed from acetyl CoA when fat breakdown predominates	653		
19.4 A Proton Gradient Across the Thylakoid Membrane Drives ATP Synthesis	577	Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms	604	Ketone bodies are a major fuel in some tissues	654	Ketone bodies are a major fuel in some tissues	654		
The ATP synthase of chloroplasts closely resembles those of mitochondria and prokaryotes	577	20.4 The Metabolism of Glucose 6-phosphate by the Pentose Phosphate Pathway Is Coordinated with Glycolysis	606	Animals cannot convert fatty acids into glucose	656	Animals cannot convert fatty acids into glucose	656		
Cyclic electron flow through photosystem I leads to the production of ATP instead of NADPH	578	The rate of the pentose phosphate pathway is controlled by the level of NADP ⁺	606	22.4 Fatty Acids Are Synthesized by Fatty Acid Synthase	627	19.5 Accessory Pigments Funnel Energy into Reaction Centers	606	Fatty acids are synthesized and degraded by different pathways	656
The absorption of eight photons yields one O ₂ , two NADPH, and three ATP molecules	579	The flow of glucose 6-phosphate depends on the need for NADPH, ribose 5-phosphate, and ATP	607	The formation of malonyl CoA is the committed step in fatty acid synthesis	656		606		657
19.6 The Ability to Convert Light into Chemical Energy Is Ancient	580	Through the looking-glass: The Calvin cycle and the pentose phosphate pathway are mirror images	609	Intermediates in fatty acid synthesis are attached to an acyl carrier protein	657		606		658
Resonance energy transfer allows energy to move from the site of initial absorbance to the reaction center	581	20.5 Glucose 6-phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive Oxygen Species	609	Fatty acid synthesis consists of a series of condensation, reduction, dehydration, and reduction reactions	659		606		659
Light-harvesting complexes contain additional chlorophylls and carotenoids	581	Glucose 6-phosphate dehydrogenase deficiency causes a drug-induced hemolytic anemia	609	Fatty acids are synthesized by a multifunctional enzyme complex in animals	660		606		660
The components of photosynthesis are highly organized	582	A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some circumstances	611	The synthesis of palmitate requires 8 molecules of acetyl CoA, 14 molecules of NADPH, and 7 molecules of ATP	661		606		661
Many herbicides inhibit the light reactions of photosynthesis	583			Citrate carries acetyl groups from mitochondria to the cytoplasm for fatty acid synthesis	662		606		662
Chapter 20 The Calvin Cycle and Pentose Phosphate Pathway	589			Several sources supply NADPH for fatty acid synthesis	662		606		663
20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water	590	Chapter 21 Glycogen Metabolism	615	Fatty acid synthase inhibitors may be useful drugs	663		606		663
Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate	591	Glycogen metabolism is the regulated release and storage of glucose	616	22.5 The Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory Enzyme Systems	663		606		663
Rubisco activity depends on magnesium and carbamate	592	21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes	617	Membrane-bound enzymes generate unsaturated fatty acids	664		606		664
Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection	593	Phosphorylase catalyzes the phosphorolytic cleavage of glycogen to release glucose 1-phosphate	617	Eicosanoid hormones are derived from polyunsaturated fatty acids	664		606		664
Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated	594	Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen	618	22.6 Acetyl CoA Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism	666		606		666
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose	597	A debranching enzyme also is needed for the breakdown of glycogen	619	Acetyl CoA carboxylase is regulated by conditions in the cell	666		606		666
Starch and sucrose are the major carbohydrate stores in plants	597	Phosphoglucomutase converts glucose 1-phosphate into glucose 6-phosphate	620	Acetyl CoA carboxylase is regulated by a variety of hormones	666		606		666
		The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle	621	Chapter 23 Protein Turnover and Amino Acid Catabolism	673		606		666
				23.1 Proteins Are Degraded to Amino Acids	674		606		666
				The digestion of dietary proteins begins in the stomach and is completed in the intestine	674		606		666
				Cellular proteins are degraded at different rates	675		606		666

23.2 Protein Turnover Is Tightly Regulated	675
Ubiquitin tags proteins for destruction	675
The proteasome digests the ubiquitin-tagged proteins	
The ubiquitin pathway and the proteasome have prokaryotic counterparts	
Protein degradation can be used to regulate biological function	
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen	
Alpha-amino groups are converted into ammonium ions by the oxidative deamination of glutamate	
Mechanism: Pyridoxal phosphate forms Schiff-base intermediates in aminotransferases	
Aspartate aminotransferase is an archetypal pyridoxal-dependent transaminase	
Pyridoxal phosphate enzymes catalyze a wide array of reactions	
Serine and threonine can be directly deaminated	
Peripheral tissues transport nitrogen to the liver	
23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	
The urea cycle begins with the formation of carbamoyl phosphate	
The urea cycle is linked to gluconeogenesis	
Urea-cycle enzymes are evolutionarily related to enzymes in other metabolic pathways	
Inherited defects of the urea cycle cause hyperammonemia and can lead to brain damage	
Urea is not the only means of disposing of excess nitrogen	
23.5 Carbon Atoms of Degraded Amino Acids Emerge As Major Metabolic Intermediates	
Pyruvate is an entry point into metabolism for a number of amino acids	
Oxaloacetate is an entry point into metabolism for aspartate and asparagine	
Alpha-ketoglutarate is an entry point into metabolism for five-carbon amino acids	
Succinyl coenzyme A is a point of entry for several nonpolar amino acids	
Methionine degradation requires the formation of a key methyl donor, S-adenosylmethionine	
The branched-chain amino acids yield acetyl CoA, acetoacetate, or propionyl CoA	
Oxygenases are required for the degradation of aromatic amino acids	
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	

Part III SYNTHESIZING THE MOLECULES OF LIFE

Chapter 24 The Biosynthesis of Amino Acids	705
Amino acid synthesis requires solutions to three key biochemical problems	706
24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia	706
The iron–molybdenum cofactor of nitrogenase binds and reduces atmospheric nitrogen	707
Ammonium ion is assimilated into an amino acid through glutamate and glutamine	709
24.2 Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways	711
Human beings can synthesize some amino acids but must obtain others from the diet	711
Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid	712
A common step determines the chirality of all amino acids	713
The formation of asparagine from aspartate requires an adenylated intermediate	713
Glutamate is the precursor of glutamine, proline, and arginine	714
3-Phosphoglycerate is the precursor of serine, cysteine, and glycine	714
Tetrahydrofolate carries activated one-carbon units at several oxidation levels	715
S-Adenosylmethionine is the major donor of methyl groups	716
Cysteine is synthesized from serine and homocysteine	718
High homocysteine levels correlate with vascular disease	719
Shikimate and chorismate are intermediates in the biosynthesis of aromatic amino acids	719
Tryptophan synthase illustrates substrate channeling in enzymatic catalysis	722
24.3 Feedback Inhibition Regulates Amino Acid Biosynthesis	723
Branched pathways require sophisticated regulation	723
An enzymatic cascade modulates the activity of glutamine synthetase	725
24.4 Amino Acids Are Precursors of Many Biomolecules	726
Glutathione, a gamma-glutamyl peptide, serves as a sulfhydryl buffer and an antioxidant	727
Nitric oxide, a short-lived signal molecule, is formed from arginine	727

Porphyrins are synthesized from glycine and succinyl coenzyme A	728
Porphyrins accumulate in some inherited disorders of porphyrin metabolism	730

Chapter 25 Nucleotide Biosynthesis

Nucleotides can be synthesized by de novo or salvage pathways	736
25.1 The Pyrimidine Ring Is Assembled de Novo or Recovered by Salvage Pathways	737
Bicarbonate and other oxygenated carbon compounds are activated by phosphorylation	737
The side chain of glutamine can be hydrolyzed to generate ammonia	737
Intermediates can move between active sites by channeling	737
Orotate acquires a ribose ring from PRPP to form a pyrimidine nucleotide and is converted into uridylate	738
Nucleotide mono-, di-, and triphosphates are interconvertible	739
CTP is formed by amination of UTP	739
Salvage pathways recycle pyrimidine bases	740
25.2 Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways	740
The purine ring system is assembled on ribose phosphate	740
The purine ring is assembled by successive steps of activation by phosphorylation followed by displacement	741
AMP and GMP are formed from IMP	743
Enzymes of the purine synthesis pathway associate with one another in vivo	744
Salvage pathways economize intracellular energy expenditure	744
25.3 Deoxyribonucleotides Are Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism	745
Mechanism: A tyrosyl radical is critical to the action of ribonucleotide reductase	745
Stable radicals other than tyrosyl radical are employed by other ribonucleotide reductases	747
Thymidylate is formed by the methylation of deoxyuridylate	748
Dihydrofolate reductase catalyzes the regeneration of tetrahydrofolate, a one-carbon carrier	749
Several valuable anticancer drugs block the synthesis of thymidylate	749
25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition	750
Pyrimidine biosynthesis is regulated by aspartate transcarbamoylase	751

The synthesis of purine nucleotides is controlled by feedback inhibition at several sites	751
The synthesis of deoxyribonucleotides is controlled by the regulation of ribonucleotide reductase	752

25.5 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions

The loss of adenosine deaminase activity results in severe combined immunodeficiency	752
Gout is induced by high serum levels of urate	753
Lesch–Nyhan syndrome is a dramatic consequence of mutations in a salvage-pathway enzyme	754
Folic acid deficiency promotes birth defects such as spina bifida	755

Chapter 26 The Biosynthesis of Membrane Lipids and Steroids

26.1 Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and Triacylglycerols	760
The synthesis of phospholipids requires an activated intermediate	761
Sphingolipids are synthesized from ceramide	763
Gangliosides are carbohydrate-rich sphingolipids that contain acidic sugars	764
Sphingolipids confer diversity on lipid structure and function	765
Respiratory distress syndrome and Tay–Sachs disease result from the disruption of lipid metabolism	765
Phosphatidic acid phosphatase is a key regulatory enzyme in lipid metabolism	766
26.2 Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages	767
The synthesis of mevalonate, which is activated as isopentenyl pyrophosphate, initiates the synthesis of cholesterol	767
Squalene (C_{30}) is synthesized from six molecules of isopentenyl pyrophosphate (C_5)	768
Squalene cyclizes to form cholesterol	769
26.3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels	770
Lipoproteins transport cholesterol and triacylglycerols throughout the organism	773
The blood levels of certain lipoproteins can serve diagnostic purposes	774
Low-density lipoproteins play a central role in cholesterol metabolism	775
The absence of the LDL receptor leads to hypercholesterolemia and atherosclerosis	776
Mutations in the LDL receptor prevent LDL release and result in receptor destruction	777

HDL appears to protect against arteriosclerosis
The clinical management of cholesterol levels can be understood at a biochemical level

26.4 Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones

Letters identify the steroid rings and numbers identify the carbon atoms
Steroids are hydroxylated by cytochrome P450 monooxygenases that use NADPH and O₂
The cytochrome P450 system is widespread and performs a protective function
Pregnenolone, a precursor of many other steroids, is formed from cholesterol by cleavage of its side chain
Progesterone and corticosteroids are synthesized from pregnenolone
Androgens and estrogens are synthesized from pregnenolone
Vitamin D is derived from cholesterol by the ring-splitting activity of light

Chapter 27 The Integration of Metabolism

27.1 Caloric Homeostasis Is a Means of Regulating Body Weight

27.2 The Brain Plays a Key Role in Caloric Homeostasis

Signals from the gastrointestinal tract induce feelings of satiety
Leptin and insulin regulate long-term control over caloric homeostasis
Leptin is one of several hormones secreted by adipose tissue
Leptin resistance may be a contributing factor to obesity
Dieting is used to combat obesity

27.3 Diabetes Is a Common Metabolic Disease Often Resulting from Obesity

Insulin initiates a complex signal-transduction pathway in muscle
Metabolic syndrome often precedes type 2 diabetes
Excess fatty acids in muscle modify metabolism
Insulin resistance in muscle facilitates pancreatic failure
Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess

27.4 Exercise Beneficially Alters the Biochemistry of Cells

Mitochondrial biogenesis is stimulated by muscular activity
Fuel choice during exercise is determined by the intensity and duration of activity

27.5 Food Intake and Starvation Induce Metabolic Changes

The starved–fed cycle is the physiological response to a fast

778	Metabolic adaptations in prolonged starvation minimize protein degradation	808
779	27.6 Ethanol Alters Energy Metabolism in the Liver	810
779	Ethanol metabolism leads to an excess of NADH	810
781	Excess ethanol consumption disrupts vitamin metabolism	812
781	Chapter 28 DNA Replication, Repair, and Recombination	819
782	28.1 DNA Replication Proceeds by the Polymerization of Deoxyribonucleoside Triphosphates Along a Template	820
783	DNA polymerases require a template and a primer	820
783	All DNA polymerases have structural features in common	821
784	Two bound metal ions participate in the polymerase reaction	821
785	The specificity of replication is dictated by complementarity of shape between bases	822
792	An RNA primer synthesized by primase enables DNA synthesis to begin	823
794	One strand of DNA is made continuously, whereas the other strand is synthesized in fragments	823
794	DNA ligase joins ends of DNA in duplex regions	824
795	The separation of DNA strands requires specific helicases and ATP hydrolysis	824
795	28.2 DNA Unwinding and Supercoiling Are Controlled by Topoisomerases	825
796	The linking number of DNA, a topological property, determines the degree of supercoiling	826
797	Topoisomerases prepare the double helix for unwinding	828
797	Type I topoisomerases relax supercoiled structures	828
798	Type II topoisomerases can introduce negative supercoils through coupling to ATP hydrolysis	829
798	28.3 DNA Replication Is Highly Coordinated	831
800	DNA replication requires highly processive polymerases	831
800	The leading and lagging strands are synthesized in a coordinated fashion	832
801	DNA replication in <i>Escherichia coli</i> begins at a unique site	834
802	DNA synthesis in eukaryotes is initiated at multiple sites	835
803	Telomeres are unique structures at the ends of linear chromosomes	836
804	Telomeres are replicated by telomerase, a specialized polymerase that carries its own RNA template	837
805	28.4 Many Types of DNA Damage Can Be Repaired	837
806	Errors can arise in DNA replication	837
807	Bases can be damaged by oxidizing agents, alkylating agents, and light	838

518	DNA damage can be detected and repaired by a variety of systems	839
519	The presence of thymine instead of uracil in DNA permits the repair of deaminated cytosine	841
519	Some genetic diseases are caused by the expansion of repeats of three nucleotides	842
519	Many cancers are caused by the defective repair of DNA	842
519	Many potential carcinogens can be detected by their mutagenic action on bacteria	843
520	28.5 DNA Recombination Plays Important Roles in Replication, Repair, and Other Processes	844
520	RecA can initiate recombination by promoting strand invasion	844
520	Some recombination reactions proceed through Holliday-junction intermediates	845
520	Chapter 29 RNA Synthesis and Processing	851
520	RNA synthesis comprises three stages: Initiation, elongation, and termination	852
521	29.1 RNA Polymerases Catalyze Transcription	853
521	RNA chains are formed de novo and grow in the 5'-to-3' direction	854
521	RNA polymerases backtrack and correct errors	856
521	RNA polymerase binds to promoter sites on the DNA template to initiate transcription	856
521	Sigma subunits of RNA polymerase recognize promoter sites	857
521	RNA polymerases must unwind the template double helix for transcription to take place	858
521	Elongation takes place at transcription bubbles that move along the DNA template	858
521	Sequences within the newly transcribed RNA signal termination	859
521	Some messenger RNAs directly sense metabolite concentrations	860
521	The <i>rho</i> protein helps to terminate the transcription of some genes	860
521	Some antibiotics inhibit transcription	861
521	Precursors of transfer and ribosomal RNA are cleaved and chemically modified after transcription in prokaryotes	863
521	29.2 Transcription in Eukaryotes Is Highly Regulated	864
521	Three types of RNA polymerase synthesize RNA in eukaryotic cells	865
521	Three common elements can be found in the RNA polymerase II promoter region	866
521	The TFIID protein complex initiates the assembly of the active transcription complex	867
521	Multiple transcription factors interact with eukaryotic promoters	868
521	Enhancer sequences can stimulate transcription at start sites thousands of bases away	868
521	29.3 The Transcription Products of Eukaryotic Polymerases Are Processed	869
521	RNA polymerase I produces three ribosomal RNAs	869
521	RNA polymerase III produces transfer RNA	870
521	The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail	870
521	Small regulatory RNAs are cleaved from larger precursors	872
521	RNA editing changes the proteins encoded by mRNA	872
521	Sequences at the ends of introns specify splice sites in mRNA precursors	873
521	Splicing consists of two sequential transesterification reactions	874
521	Small nuclear RNAs in spliceosomes catalyze the splicing of mRNA precursors	875
521	Transcription and processing of mRNA are coupled	877
521	Mutations that affect pre-mRNA splicing cause disease	877
521	Most human pre-mRNAs can be spliced in alternative ways to yield different proteins	878
521	29.4 The Discovery of Catalytic RNA Was Revealing in Regard to Both Mechanism and Evolution	879
521	Chapter 30 Protein Synthesis	887
521	30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid Sequences	888
521	The synthesis of long proteins requires a low error frequency	888
521	Transfer RNA molecules have a common design	889
521	Some transfer RNA molecules recognize more than one codon because of wobble in base-pairing	891
521	30.2 Aminoacyl Transfer RNA Synthetases Read the Genetic Code	893
521	Amino acids are first activated by adenylation	893
521	Aminoacyl-tRNA synthetases have highly discriminating amino acid activation sites	894
521	Proofreading by aminoacyl-tRNA synthetases increases the fidelity of protein synthesis	895
521	Synthetases recognize various features of transfer RNA molecules	896
521	Aminoacyl-tRNA synthetases can be divided into two classes	897
521	30.3 The Ribosome Is the Site of Protein Synthesis	897
521	Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis	898
521	Ribosomes have three tRNA-binding sites that bridge the 30s and 50s subunits	900

The start signal is usually AUG preceded by several bases that pair with 16S rRNA
 Bacterial protein synthesis is initiated by formylmethionyl transfer RNA
 Formylmethionyl-tRNA_f is placed in the P site of the ribosome in the formation of the 70S initiation complex
 Elongation factors deliver aminoacyl-tRNA to the ribosome
 Peptidyl transferase catalyzes peptide-bond synthesis
 The formation of a peptide bond is followed by the GTP-driven translocation of tRNAs and mRNA
 Protein synthesis is terminated by release factors that read stop codons

30.4 Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily in Translation Initiation

Mutations in initiation factor 2 cause a curious pathological condition

30.5 A Variety of Antibiotics and Toxins Can Inhibit Protein Synthesis

Some antibiotics inhibit protein synthesis
 Diphtheria toxin blocks protein synthesis in eukaryotes by inhibiting translocation
 Ricin fatally modifies 28S ribosomal RNA

30.6 Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane Proteins

Signal sequences mark proteins for translocation across the endoplasmic reticulum membrane
 Transport vesicles carry cargo proteins to their final destination

Chapter 31 The Control of Gene Expression in Prokaryotes

31.1 Many DNA-Binding Proteins Recognize Specific DNA Sequences

The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins

31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons

An operon consists of regulatory elements and protein-encoding genes

The *lac* repressor protein in the absence of lactose binds to the operator and blocks transcription

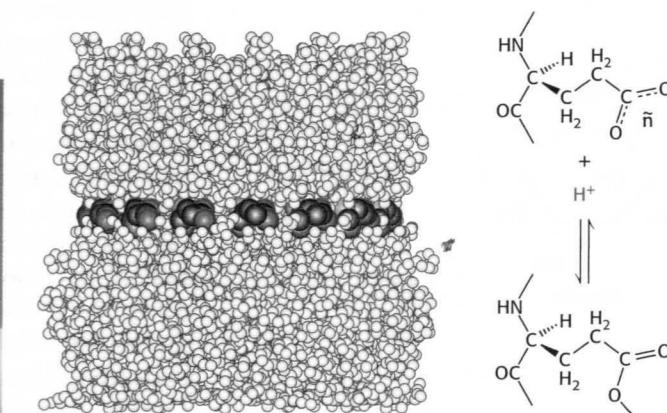
Ligand binding can induce structural changes in regulatory proteins

The operon is a common regulatory unit in prokaryotes

Transcription can be stimulated by proteins that contact RNA polymerase

31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression	928
Lambda repressor regulates its own expression	928
A circuit based on lambda repressor and Cro form a genetic switch	929
Many prokaryotic cells release chemical signals that regulate gene expression in other cells	929
Biofilms are complex communities of prokaryotes	930
31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels	931
Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure	931
Chapter 32 The Control of Gene Expression in Eukaryotes	937
32.1 Eukaryotic DNA Is Organized into Chromatin	938
Nucleosomes are complexes of DNA and histones	939
DNA wraps around histone octamers to form nucleosomes	939
32.2 Transcription Factors Bind DNA and Regulate Transcription Initiation	941
A range of DNA-binding structures are employed by eukaryotic DNA-binding proteins	941
Activation domains interact with other proteins	942
Multiple transcription factors interact with eukaryotic regulatory regions	943
Enhancers can stimulate transcription in specific cell types	943
Induced pluripotent stem cells can be generated by introducing four transcription factors into differentiated cells	944
32.3 The Control of Gene Expression Can Require Chromatin Remodeling	944
The methylation of DNA can alter patterns of gene expression	945
Steroids and related hydrophobic molecules pass through membranes and bind to DNA-binding receptors	946
Nuclear hormone receptors regulate transcription by recruiting coactivators to the transcription complex	946
Steroid-hormone receptors are targets for drugs	948
Chromatin structure is modulated through covalent modifications of histone tails	949
Histone deacetylases contribute to transcriptional repression	950
32.4 Eukaryotic Gene Expression Can Be Controlled at Posttranscriptional Levels	951
Genes associated with iron metabolism are translationally regulated in animals	951
Small RNAs regulate the expression of many eukaryotic genes	953

Part IV RESPONDING TO ENVIRONMENTAL CHANGES


Chapter 33 Sensory Systems

33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction	958
Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors	958
Odorants are decoded by a combinatorial mechanism	960
33.2 Taste Is a Combination of Senses That Function by Different Mechanisms	962
Sequencing of the human genome led to the discovery of a large family of 7TM bitter receptors	963
A heterodimeric 7TM receptor responds to sweet compounds	964
Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related to the sweet receptor	965
Salty tastes are detected primarily by the passage of sodium ions through channels	965
Sour tastes arise from the effects of hydrogen ions (acids) on channels	965
33.3 Photoreceptor Molecules in the Eye Detect Visible Light	966
Rhodopsin, a specialized 7TM receptor, absorbs visible light	966
Light absorption induces a specific isomerization of bound 11-cis-retinal	967
Light-induced lowering of the calcium level coordinates recovery	968
Color vision is mediated by three cone receptors that are homologs of rhodopsin	968
Rearrangements in the genes for the green and red pigments lead to “color blindness”	969
33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli	970
Hair cells use a connected bundle of stereocilia to detect tiny motions	971
Mechanosensory channels have been identified in <i>Drosophila</i> and vertebrates	972
33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors	973
Studies of capsaicin reveal a receptor for sensing high temperatures and other painful stimuli	973
More sensory systems remain to be studied	974
Chapter 34 The Immune System	977
Innate immunity is an evolutionarily ancient defense system	978
The adaptive immune system responds by using the principles of evolution	979

34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units	981
34.2 Antibodies Bind Specific Molecules Through Hypervariable Loops	983
The immunoglobulin fold consists of a beta-sandwich framework with hypervariable loops	984
X-ray analyses have revealed how antibodies bind antigens	984
Large antigens bind antibodies with numerous interactions	986
34.3 Diversity Is Generated by Gene Rearrangements	987
J (joining) genes and D (diversity) genes increase antibody diversity	987
More than 10^8 antibodies can be formed by combinatorial association and somatic mutation	988
The oligomerization of antibodies expressed on the surfaces of immature B cells triggers antibody secretion	989
Different classes of antibodies are formed by the hopping of V _H genes	990
34.4 Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	991
Peptides presented by MHC proteins occupy a deep groove flanked by alpha helices	992
T-cell receptors are antibody-like proteins containing variable and constant regions	994
CD8 on cytotoxic T cells acts in concert with T-cell receptors	994
Helper T cells stimulate cells that display foreign peptides bound to class II MHC proteins	996
Helper T cells rely on the T-cell receptor and CD4 to recognize foreign peptides on antigen-presenting cells	996
MHC proteins are highly diverse	998
Human immunodeficiency viruses subvert the immune system by destroying helper T cells	999
34.5 The Immune System Contributes to the Prevention and the Development of Human Diseases	1000
T cells are subjected to positive and negative selection in the thymus	1000
Autoimmune diseases result from the generation of immune responses against self-antigens	1001
The immune system plays a role in cancer prevention	1001
Vaccines are a powerful means to prevent and eradicate disease	1002
Chapter 35 Molecular Motors	1007
35.1 Most Molecular-Motor Proteins Are Members of the P-Loop NTPase Superfamily	1008
Molecular motors are generally oligomeric proteins with an ATPase core and an extended structure	1008

ATP binding and hydrolysis induce changes in the conformation and binding affinity of motor proteins	
35.2 Myosins Move Along Actin Filaments	1010
Actin is a polar, self-assembling, dynamic polymer	
Myosin head domains bind to actin filaments	1012
Motions of single motor proteins can be directly observed	1014
Phosphate release triggers the myosin power stroke	1014
Muscle is a complex of myosin and actin	1015
The length of the lever arm determines motor velocity	1015
35.3 Kinesin and Dynein Move Along Microtubules	1018
Microtubules are hollow cylindrical polymers	
Kinesin motion is highly processive	1018
35.4 A Rotary Motor Drives Bacterial Motion	1018
Bacteria swim by rotating their flagella	1018
Proton flow drives bacterial flagellar rotation	1020
Bacterial chemotaxis depends on reversal of the direction of flagellar rotation	1022
Chapter 36 Drug Development	1029
36.1 The Development of Drugs Presents Huge Challenges	1030
Drug candidates must be potent modulators of their targets	1030
Drugs must have suitable properties to reach their targets	1031
Toxicity can limit drug effectiveness	1036
36.2 Drug Candidates Can Be Discovered by Serendipity, Screening, or Design	1037
Serendipitous observations can drive drug development	
Screening libraries of compounds can yield drugs or drug leads	1039
Drugs can be designed on the basis of three-dimensional structural information about their targets	1042
36.3 Analyses of Genomes Hold Great Promise for Drug Discovery	1045
Potential targets can be identified in the human proteome	
Animal models can be developed to test the validity of potential drug targets	1046
Potential targets can be identified in the genomes of pathogens	1046
Genetic differences influence individual responses to drugs	1047
36.4 The Development of Drugs Proceeds Through Several Stages	1048
Clinical trials are time consuming and expensive	
The evolution of drug resistance can limit the utility of drugs for infectious agents and cancer	1048
Answers to Problems	1050
Selected Readings	A
Index	B
	C

Biochemistry: An Evolving Science

Chemistry in action. Human activities require energy. The interconversion of different forms of energy requires large biochemical machines comprising many thousands of atoms such as the complex shown above. Yet, the functions of these elaborate assemblies depend on simple chemical processes such as the protonation and deprotonation of the carboxylic acid groups shown on the right. The photograph is of Nobel Prize winners Peter Agre, M.D., and Carol Greider, Ph.D., who used biochemical techniques to study the structure and function of proteins. [Courtesy of Johns Hopkins Medicine.]

Biochemistry is the study of the chemistry of life processes. Since the discovery that biological molecules such as urea could be synthesized from nonliving components in 1828, scientists have explored the chemistry of life with great intensity. Through these investigations, many of the most fundamental mysteries of how living things function at a biochemical level have now been solved. However, much remains to be investigated. As is often the case, each discovery raises at least as many new questions as it answers. Furthermore, we are now in an age of unprecedented opportunity for the application of our tremendous knowledge of biochemistry to problems in medicine, dentistry, agriculture, forensics, anthropology, environmental sciences, and many other fields. We begin our journey into biochemistry with one of the most startling discoveries of the past century: namely, the great unity of all living things at the biochemical level.

1.1 Biochemical Unity Underlies Biological Diversity

The biological world is magnificently diverse. The animal kingdom is rich with species ranging from nearly microscopic insects to elephants and whales. The plant kingdom includes species as small and relatively simple

OUTLINE

- 1.1** Biochemical Unity Underlies Biological Diversity
- 1.2** DNA Illustrates the Interplay Between Form and Function
- 1.3** Concepts from Chemistry Explain the Properties of Biological Molecules
- 1.4** The Genomic Revolution Is Transforming Biochemistry and Medicine