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spent in synthesizing glucose from pyruvate 485
16.4 Gluconeogenesis and Glycolysis Are
Reciprocally Regulated 486
Energy charge determines whether glycolysis or
gluconeogenesis will be most active 486
The balance between glycolysis and gluconeogenesis
in the liver is sensitive to blood-glucose concentration 487
Substrate cycles amplify metabolic signals and
produce heat 489
Lactate and alanine formed by contracting muscle
are used by other organs 489
Glycolysis and gluconeogenesis are evolutionarily
intertwined 491
Chapter 17 The Citric Acid Cycle 497
The citric acid cycle harvests high-energy electrons 498
17.1 Pyruvate Dehydrogenase Links Glycolysis
to the Citric Acid Cycle 499
Mechanism: The synthesis of acetyl coenzyme a from
pyruvate requires three enzymes and five coenzymes 500
Flexible linkages allow lipoamide to move between
different active sites 502
17.2 The Citric Acid Cycle Oxidizes
Two-Carbon Units 503
Citrate synthase forms citrate from oxaloacetate and
acetyl coenzyme A 504

Mechanism: The mechanism of citrate synthase
prevents undesirable reactions

Citrate is isomerized into isocitrate

Isocitrate is oxidized and decarboxylated to
alpha-ketoglutarate

Succinyl coenzyme A is formed by the oxidative
decarboxylation of alpha-ketoglutarate

A compound with high phosphoryl-transfer potential
is generated from succinyl coenzyme A

Mechanism: Succinyl coenzyme A synthetase
transforms types of biochemical energy

Oxaloacetate is regenerated by the oxidation

of succinate

The citric acid cycle produces high-transfer-potential
electrons, ATP, and CO,

17.3 Entry to the Citric Acid Cycle and
Metabolism Through It Are Controlled

The pyruvate dehydrogenase complex is regulated
allosterically and by reversible phosphorylation

The citric acid cycle is controlled at several points
Defects in the citric acid cycle contribute to the
development of cancer

17.4 The Citric Acid Cycle Is a Source of
Biosynthetic Precursors

The citric acid cycle must be capable of being
rapidly replenished

The disruption of pyruvate metabolism is the cause
of beriberi and poisoning by mercury and arsenic
The citric acid cycle may have evolved from
preexisting pathways

17.5 The Glyoxylate Cycle Enables Plants
and Bacteria to Grow on Acetate

Chapter 18 Oxidative Phosphorylation
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18.1 Eukaryotic Oxidative Phosphorylation
Takes Place in Mitochondria
Mitochondria are bounded by a double membrane

Mitochondria are the result of an
endosymbiotic event

18.2 Oxidative Phosphorylation Depends on
Electron Transfer

The electron-transfer potential of an electron is
measured as redox potential

A 1.14-volt potential difference between NADH and
molecular oxygen drives electron transport through
the chain and favors the formation of a proton
gradient

18.3 The Respiratory Chain Consists of
Four Complexes: Three Proton Pumps and
a Physical Link to the Citric Acid Cycle

The high-potential electrons of NADH enter the
respiratory chain at NADH-Q oxidoreductase
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Ubiquinol is the entry point for electrons from FADH,
of flavoproteins ;

Electrons flow from ubiquinol to cytochrome ¢
through Q-cytochrome ¢ oxidoreductase

The Q cycle funnels electrons from a two-electron
carrier to a one-electron carrier and pumps protons

Cytochrome ¢ oxidase catalyzes the reduction of
molecular oxygen to water

Toxic derivatives of molecular oxygen such as
superoxide radical are scavenged by protective enzymes
Electrons can be transferred between groups that are
not in contact

The conformation of cytochrome ¢ has remained
essentially constant for more than a billion years

18.4 A Proton Gradient Pofvers the
Synthesis of ATP

ATP synthase is composed of a proton-conducting
unit and a catalytic unit *

Proton flow through ATP synthase leads to the release
of tightly bound ATP: The binding-change mechanism
Rotational catalysis is the world’s smallest molecular motor
Proton flow around the ¢ ring powers ATP synthesis
ATP synthase and G proteins have several common
features

18.5 Many Shuttles Allow Movement Across
Mitochondrial Membranes

Electrons from cytoplasmic NADH enter
mitochondria by shuttles

The entry of ADP into mitochondria is coupled to
the exit of ATP by ATP-ADP translocase

Mitochondrial transporters for metabolites have a
common tripartite structure

18.6 The Regulation of Cellular Respiration Is
Governed Primarily by the Need for ATP

The complete oxidation of glucose yields about

30 molecules of ATP

The rate of oxidative phosphorylation is determined

by the need for ATP

Regulated uncoupling leads to the generation of heat
Oxidative phosphorylation can be inhibited at many stages
Mitochondrial diseases are being discovered
Mitochondria play a key role in apoptosis

Power transmission by proton gradients is a central
motif of bioenergetics

Chapter 19 The Light Reactions of
Photosynthesis -
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Photosynthesis converts light energy into chemical energy 566

19.1 Photosynthesis Takes Place in Chloroplasts

The primary events of photosynthesis take place in
thylakoid membranes
Chloroplasts arose from an endosymbiotic event

567
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chlorophylls and carotinoids 582
The components of photosynthesis are highly organized 583
Many herbicides inhibit the light reactions of

photosynthesis 584
19.6 The Ability to Convert Light into Chemical
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Catalytic imperfection 593
Hexose phosphates are made from phosphoglycerate,

and ribulose 1,5-bisphosphate is regenerated 594
Three ATP and two NADPH molecules are used to

bring carbon dioxide to the level of a hexose 597

Starch and sucrose are the major carbohydrate
stores 1n plants 597

20.2 The Activity of the Calvin Cycle Depends

on Environmental Conditions 597
Rubisco is activated by light-driven changes in proton
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Thioredoxin plays a key role in regulating the

Calvin cycle 598
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arid ecosystems 600
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conversion of glucose 6-phosphate into ribulose
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The pentose phosphate pathway and glycolysis are

linked by transketolase and transaldolase 601
Mechanism: Transketolase and transaldolase stabilize
carbanionic intermediates by different mechanisms 604
20.4 The Metabolism of Glucose 6-phosphate

by the Pentose Phosphate Pathway Is

Coordinated with Glycolysis 606
The rate of the pentose phosphate pathway is controlled

by the level of NADP* 606
The flow of glucose 6-phosphate depends on the

need for NADPH, ribose 5-phosphate, and ATP 607
Through the looking-glass: The Calvin cycle and the

pentose phosphate pathway are mirror images 609
20.5 Glucose 6-phosphate Dehydrogenase

Plays a Key Role in Protection Against Reactive
Oxygen Species 609
Glucose 6-phosphate dehydrogenase deficiency causes

a drug-induced hemolytic anemia 609
A deficiency of glucose 6-phosphate dehydrogenase

confers an evolutionary advantage in some

circumstances 611
Chapter 21 Glycogen Metabolism 615
Glycogen metabolism is the regulated release and

storage of glucose 616
21.1 Glycogen Breakdown Requires the

Interplay of Several Enzymes 617
Phosphorylase catalyzes the phosphorolytic cleavage

of glycogen to release glucose 1-phosphate 617
Mechanism: Pyridoxal phosphate participates in the
phosphorolytic cleavage of glycogen 618
A debranching enzyme also is needed for the

breakdown of glycogen 619
Phosphoglucomutase converts glucose 1-phosphate

into glucose 6-phosphate 620
The liver contains glucose 6-phosphatase, a

hydrolytic enzyme absent from muscle 621

21.2 Phosphorylase Is Regulated by Allosteric
Interactions and Reversible Phosphorylation 621
Muscle phosphorylase is regulated by the intracellular
energy charge 621
Liver phosphorylase produces glucose for use by other

tissues 623
Phosphorylase kinase is activated by phosphorylation

and calcium ions 623
21.3 Epinephrine and Glucagon Signal the

Need for Glycogen Breakdown 624
G proteins transmit the signal for the initiation of

glycogen breakdown 624
Glycogen breakdown must be rapidly turned off

when necessary 626
The regulation of glycogen phosphorylase became

more sophisticated as the enzyme evolved 627
21.4 Glycogen Is Synthesized and Degraded

by Different Pathways 627
UDP-glucose is an activated form of glucose 627
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from UDP-glucose to a growing chain 628
A branching enzyme forms a-1,6 linkages 629
Glycogen synthase is the key regulatory enzyme in
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Glycogen is an efficient storage form of glucose 629
21.5 Glycogen Breakdown and Synthesis Are
Reciprocally Regulated 630
Protein phosphatase 1 reverses the regulatory effects

of kinases on glycogen metabolism 631
Insulin stimulates glycogen synthesis by inactivating

glycogen synthase kinase 632
Glycogen metabolism in the liver regulates the

blood-glucose level 633
A biochemical understanding of glycogen-storage

diseases is possible 634
Chapter 22 Fatty Acid Metabolism 639
Fatty acid degradation and synthesis mirror each

other in their chemical. reactions 640
22.1 Triacylglycerols Are Highly Concentrated

Energy Stores 641
Dietary lipids are digested by pancreatic lipases 641
Dietary lipids are transported in chylomicrons 642
22.2 The Use of Fatty Acids As Fuel Requires

Three Stages of Processing 643
Triacylglycerols are hydrolyzed by hormone-stimulated
lipases 643
Fatty acids are linked to coenzyme A before they

are oxidized 644
Carnitine carries long-chain activated fatty acids

nto the mitochondrial matrix 645
Acetyl CoA, NADH, and FADH, are generated in

each round of fatty acid oxidation 646
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The complete oxidation of palmitate yields

106 molecules of ATP ¢ 647
22.3 Unsaturated and Odd-Chain Fatty Acids
Require Additional Steps for Degradation 648
An isomerase and a reductase are required for

the oxidation of unsaturated fatty acids 648
Odd-chain fatty acids yield propionyl CoA in the

final thiolysis step 649
Vitamin By, contains a corrin ring and a cobalt atom 650
Mechanism: Methylmalonyl CoA mutase catalyzes a
rearrangement to form succinyl CoA 651
Fatty acids are also oxidized in peroxisomes 652
Ketone bodies are formed from acetyl CoA when

fat breakdown predominates  ; 653
Ketone bodies are a major fuel in some tissues 654
Animals cannot convert fatty acids into glucose 656
22.4 Fatty Acids Are Synthesized by Fatty

Acid Synthase 656
Fatty acids are synthesized and degraded by different

pathways 656
The formation of malonyl CoA is the committed step

in fatty acid synthesis 657
Intermediates in fatty acid synthesis are attached to

an acyl carrier protein 657
Fatty acid synthesis consists of a series of condensation,
reduction, dehydration, and reduction reactions 658

Fatty acids are synthesized by a multifunctional
enzyme complex in animals 659

The synthesis of palmitate requires 8 molecules of acetyl
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Citrate carries acetyl groups from mitochondria to
the cytoplasm for fatty acid synthesis 662

Several sources supply NADPH for fatty acid synthesis 662
Fatty acid synthase inhibitors may be useful drugs 663

22.5 The Elongation and Unsaturation of

Fatty Acids Are Accomplished by Accessory

Enzyme Systems 663
Membrane-bound enzymes generate unsaturated fatty acids 664

Eicosanoid hormones are derived from polyunsaturated

fatty acids 664
22.6 Acetyl CoA Carboxylase Plays a Key Role

in Controlling Fatty Acid Metabolism 666
Acetyl CoA carboxylase is regulated by conditions in

the cell 666
Acetyl CoA carboxylase is regulated by a variety of

hormones : 666

Chapter 23 Protein Turnover and Amino
Acid Catabolism 673

23.1 Proteins Are Degraded to Amino Acids 674

The digestion of dietary proteins begins in the
stomach and is completed in the intestine 674

Cellular proteins are degraded at different rates 675
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23.2 Protein Turnover Is Tightly Regulated
Ubiquitin tags proteins for destruction

The proteasome digests the ubiquitin-tagged
proteins

The ubiquitin pathway and the proteasome

have prokaryotic counterparts

Protein degradation can be used to regulate
biological function

23.3 The First Step in Amino Acid Degradation
Is the Removal of Nitrogen

Alpha-amino groups are converted into

ammonium ions by the oxidative deamination

of glutamate

Mechanism: Pyridoxal phosphate forms Schiff-base
intermediates in aminotransferases

Aspartate aminotransferase is an archetypal
pyridoxal-dependent transaminase

Pyridoxal phosphate enzymes catalyze a wide array
of reactions

Serine and threonine can be directly

deaminated

Peripheral tissues transport nitrogen to the

liver

23.4 Ammonium lon Is Converted into Urea
in Most Terrestrial Vertebrates

The urea cycle begins with the formation of
carbamoyl phosphate

The urea cycle is linked to gluconeogenesis
Urea-cycle enzymes are evolutionarily related to
enzymes in other metabolic pathways

Inherited defects of the urea cycle cause
hyperammonemia and can lead to brain damage
Urea is not the only means of disposing of
excess nitrogen

23.5 Carbon Atoms of Degraded Amino
Acids Emerge As Major Metabolic
Intermediates

Pyruvate is an entry point into metabolism for a
number of amino acids

Oxaloacetate is an entry point into metabolism for
aspartate and asparagine

Alpha-ketoglutarate is an entry point into metabolism
for five-carbon amino acids

Succinyl coenzyme A is a point of entry for several
nonpolar amino acids

Methionine degradation requires the formation of a
key methyl donor, S-adenosylmethionine

The branched-chain amino acids yield acetyl CoA,
acetoacetate, or propionyl CoA

Oxygenases are required for the degradation of
aromatic amino acids

23.6 Inborn Errors of Metabolism Can
Disrupt Amino Acid Degradation
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Part Ill SYNTHESIZING THE MOLECULES
OF LIFE

Chapter 24 The Biosynthesis of Amino Acids 705

Amino acid synthesis requires solutions to three
key biochemical problems 706

24.1 Nitrogen Fixation: Microorganisms Use
ATP and a Powerful Reductant to Reduce

Atmospheric Nitrogen to Ammonia 706
The iron-molybdenum cofactor of nitrogenase binds
and reduces atmospheric nitrogen 707

Ammonium ion is assimilated into an amino acid
through glutamate and glutamine 709

24.2 Amino Acids Are Made from Intermediates
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Pathways 711
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must obtain others from the diet 711
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Shikimate and chorismate are intermediates in the

biosynthesis of aromatic amino acids 719
Tryptophan synthase illustrates substrate channeling

in enzymatic catalysis 722
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An enzymatic cascade modulates the activity of

glutamine synthetase 725
24.4 Amino Acids Are Precursors of Many
Biomolecules 726
Glutathione, a gamma-glutamyl peptide, serves as

a sulfhydryl buffer and an antioxidant 727

Nitric oxide, a short-lived signal molecule, is formed
from arginine 727

Porphyrins are synthesized from glycine and succinyl
coenzyme A

channeling

into uridylate

phosphate

displacement

expenditure

of thymidylate

728
Porphyrins accumulate in some inherited disorders of
porphyrin metabolism 730
Chapter 25 Nucleotide Biosynthesis 735
Nucleotides can be synthesized by de novo or
salvage pathways 736
25.1 The Pyrimidine Ring Is Assembled de
Novo or Recovered by Salvage Pathways 737
Bicarbonate and other oxygenated carbon compounds
are activated by phosphorylation 737
The side chain of glutamine can be hydrolyzed to
generate ammonia 737
Intermediates can move between active sites by

737
Orotate acquires a ribose ring from PRPP to
form a pyrimidine nucleotide and is converted

738
Nucleotide mono-, di-, and triphosphates are
interconvertible 739
CTP is formed by amination of UTP 739
Salvage pathways recycle pyrimidine bases 740
25.2 Purine Bases Can Be Synthesized de
Novo or Recycled by Salvage Pathways 740
The purine ring system is assembled on ribose

740
The purine ring is assembled by successive steps of
activation by phosphorylation followed by

741
AMP and GMP are formed from IMP 743
Enzymes of the purine synthesis pathway associate
with one another in vivo 744
Salvage pathways economize intracellular energy

744
25.3 Deoxyribonucleotides Are Synthesized
by the Reduction of Ribonucleotides Through
a Radical Mechanism 745
Mechanism: A tyrosy} radical is critical to the action
of ribonucleotide reductase 745
Stable radicals other than tyrosyl radical are
employed by other ribonucleotide reductases 747
Thymidylate is formed by the methylation of
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Dihydrofolate reductase catalyzes the regeneration
of tetrahydrofolate, a one-carbon carrier 749
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749
25.4 Key Steps in Nucleotide Biosynthesis Are
Regulated by Feedback Inhibition 750
Pyrimidine biosynthesis is regulated by aspartate

751

transcarbamoylase
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The synthesis of purine nucleotides is controlled by
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controlled by the regulation of ribonucleotide
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Biochemistry: An Evolving Science

Biochemistry 1s the study of the chemistry of life processes. Since the dis-
covery that biological molecules such as urea could be synthesized from
nqnhving components in 1828, scientists have explored the chemistry of life
with great intensity. Through these investigations, many of the most funda-
mental mysteries of how living things function at a biochemical level have
now been solved. However, much remains to be investigated. As is often the
case, each discovery raises at least as many new questions as it answers.
F urthermore, we are now in an age of unprecedented opportunity for the
apphcation of our tremendous knowledge of biochemistry to problems in
mgdlcine, dentistry, agriculture, forensics, anthropology, environmental
sciences, and many other fields. We begin our journey into biochemistry
with one of the most startling discoveries of the past century: namely, the
great unity of all living things at the biochemical level.

1.1 Biochemical Unity Underlies Biological Diversity

The biological world is magnificently diverse. The animal kingdom is rich
with species ranging from nearly microscopic insects to elephants and
whales. The plant kingdom includes species as small and relatively simple

CHAPTER |

Chemistry in action. Human activities require energy. The interconversion
of different forms of energy requires large biochemical machines
comprising many thousands of atoms such as the complex shown above.
Yet, the functions of these elaborate assemblies depend on simple
chemical processes such as the protonation and deprotonation of the
carboxylic acid groups shown on the right. The photograph is of Nobel
Prize winners Peter Agre, M.D., and Carol Greider, Ph.D., who used
biochemical techniques to study the structure and function of proteins.
[Courtesy of Johns Hopkins Medicine.]

OUTLINE

1.1 Biochemical Unity Underlies
Biological Diversity

1.2 DNA lllustrates the Interplay
Between Form and Function

1.3 Concepts from Chemistry Explain
the Properties of Biological
Molecules

1.4 The Genomic Revolution Is
Transforming Biochemistry and
Medicine
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