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20.2 The Activity of the Calvin Cycle Depends 
on Environmental Conditions 597 
Rubisco is activated by light-driven changes in proton 
and magnesium ion concentrations 598 
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Cellular proteins are degraded at different rates 675 



x x v i Contents 

23.2 Protein Turnover 15 Tightly Regulated 
Ubiquitin tags proteins for destruction 

The proteasome digests the ubiquitin-tagged 
proteins 

The ubiquitin pathway and the proteasome 
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biological function 
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15 the Removal of Nitrogen 
Alpha-amino groups are converted into 
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23.6 Inborn Errors of Metabolism Can 
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Chapter 24 The Biosynthesis of Amino Acids 705 

Amino acid synthesis requires solutions to three 
key biochemical problems 706 

24.1 Nitrogen Fixation: Microorganisms Use 
ATP and a Powerful Reductant to Reduce 
Atmospheric Nitrogen to Ammonia 706 
The iron- molybdenum cofactor of nitrogenase binds 
and reduces atmospheric nitrogen 707 

Ammonium ion is assimilated into an ami no acid 
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Pathways 711 
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must obtain others from the diet 711 
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High homocysteine levels correlate with 
vascular disease 
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24.3 Feedback Inhibition Regulates Amino 
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An enzymatic cascad e modulates the activity of 
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24.4 Amino Acids Are Precursors of Many 
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Glutathione, a gamma-glutamyl peptide, serves as 
a sulfhydryl buffer and an antioxidant 

¡itric oxide, a shart-lived signal molecule, is formed 
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Porphyrins are synthesized from glycine and succinyl 
coenzymeA 
Porphyrins accumulate in some inherited disorders of 
porphyrin metabolism 

Chapter 25 Nucleotide Biosynthesis 

ucleotides can be synthesized by de novo or 
salvage pathways 

25.1 The Pyrimidine Ring 15 Assembled de 
Novo or Recovered by Salvage Pathways 
Bicarbonate and other oxygenated carbon compounds 
are activated by phosphorylation 

The side chain of glutamine can be hydrolyzed to 
generate ammonia 

Intermediates can move between active sites by 
channeling 

Orotate acquires a ribose ring from PRPP to 
form a pyrimidine nucleotide and is con verted 
into uridylate 

Nucleotide mono-, di- , and triphosphates are 
interconvertible 

CTP is formed by amination of UTP 

728 

730 

735 

736 

737 

737 

737 

737 

738 

739 

739 

Salvage pathways recycle pyrimidine bases 740 

25.2 Purine Bases Can Be Synthesized de 
Novo or Recyeled by Salvage Pathways 740 
The purine ring system is assembled on ribo se 
phosphate 740 

The purine ring is assembled by successive steps of 
activation by phosphorylation followed by 
displacement 741 

AMP and GMP are formed from IMP 743 

Enzymes of the purine synthesis pathway associate 
with one another in vivo 744 

Salvage pathways economize intracellular energy 
expenditure 744 

25.3 Deoxyribonueleotides Are Synthesized 
by the Reduction of Ribonueleotides Through 
a Radical Mechanism 745 
Mechanism: A tyrosyl radical is critical to the action 
of ribonucleotide reductase 745 

Stable radical s other than tyrosyl radical are 
employed by other ribonucleotide reductases 747 

Thymidylate is formed by the methylation of 
deoxyuridylate 748 

Dihydrofolate reductase catalyzes the regeneration 
of tetrahydrofolate, a one-carbon carrier 749 

Several valuable anticancer drugs block the synthesis 
of thymidylate 749 

25.4 Key Steps in Nueleotide Biosynthesis Are 
Regulated by Feedback Inhibition 750 
Pyrimidine biosynthesis is regulated by aspartate 
transcarbamoylase 751 
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The synthesis of purine nucleotides is controlled by 
feedback inhibition at several sit~ 

The synthesis of deoxyribonucleotides is 
controlled by the regulation of ribonucleotide 
reductase 

25.5 Disruptions in Nueleotide Metabolism 
Can Cause Pathological Conditions 
The loss of adenosine deaminase activity results 
in severe combined immunodeficiency 

Gout is induced by high serum levels of urate 

Lesch- yhan syndrome is a drama tic consequence 
of mutations in a salvage-pathway enzyme 

F olic acid deficiency promotes birth defects such 
as spina bifida 

Chapter 26 The Biosynthesis of Membrane 
Lipids and Steroids ~ 

26.1 Phosphatidate 15 a Common Intermediate 
in the Synthesis of Phospholipids and 
Triacylglycerols 
The synthesis of phospholipids requires an activated 
intermediate 

Sphingolipids are synthesized from ceramide 

Gangliosides are carbohydrate-rich sphingolipids 
that contain acidic sugars 

Sphingolipids confer diversity on lipid structure and 
function 

Respiratory distress syndrome and T ay- Sachs disease 
result from the disruption of lipid metabolism 

Phosphatiditic acid phosphatase is a key regulatory 
enzyme in lipid metabolism 

26.2 Cholesterol 15 Synthesized from Acetyl 
Coenzyme A in Three Stages 
The synthesis of mevalonate, which is activated as 
isopentenyl pyrophosphate, initiates the synthesis of 
cholesterol 

Squalene (C30) is synthesized from six molecules of 
isopentenyl pyrophosphate (Cs) 
Squalene cyclizes to form cholesterol 

26.3 The Complex Regulation of 
Cholesterol Biosynthesis Takes Place at 
Several Levels 
Lipoproteins transport cholesterol and triacylglycerols 
throughout the organism 

The blood levels of certain lipoproteins can serve 
diagnostic purposes 

Low-density lipoproteins playa central role in 
cholesterol metabolism 

The absence of the LDL receptor leads to 
hypercholesterolemia and atherosclerosis 

Mutations in the LDL receptor prevent LDL release 
and result in receptor destruction 
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Androgens and estro gens are synthesized from 
pregnenolone 784 
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over caloric homeostasis 795 
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Metabolic Changes 806 
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minimize protein degradation 808 
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metabolism 812 

Chapter 28 DNA Replication, Repair, and 
Recombination 819 

28.1 DNA Replication Proceeds by the 
Polymerization of Deoxyribonucleoside 
Triphosphates Along a Template 820 
DNA polymerases require a template and a primer 820 

All DNA polymerases have structural features in 
common 821 

Two bound metal ions participate in the 
polymerase reaction 821 

The specificity of replication is dictated by 
complementarity of shape between bases 822 
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unwinding 828 
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Repaired 837 
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28.5 DNA Recombination Plays Important Roles 
in Replication, Repair, and Other Processes 844 
RecA can initiate recombination by promoting strand 

29.3 The Transcription Products of Eukaryotic 
Polymerases Are Processed 869 
RNA polymerase 1 produces three ribosomal RNAs 869 

RNA polymerase III produces transfer RNA 870 

The product of RNA polymerase n, the pre-mRNA 
transcript, acquires a S' cap and a 3' poly(A) tail 870 

Small regulatory R As are cleaved from larger 
precursors 872 

R JA editing changes the proteins encoded by mRNA 872 

Sequences at the ends of introns specify splice sites 
in mRNA precursors 873 

mvaSlOn 844 

Some recombination reactions proceed through 
Splicing consists of two sequentiaJ.. transesterification 
reactlOns 874 

Holliday-j unction intermediates 845 
Small nuclear RNAs in spliceosomes catalyze the 
splicing of mRNA precursors 875 

Chapter 29 RNA Synthesis and Processing 851 Transcription and processing of mRNA ate coupled 877 

Mutations that affect pre-mRNA splicing cause disease 877 
RNA synthesis comprises three stages: Initiation , 
elongation, and termination 852 

Most human pre-mR AS can be spliced in alternative 
ways to yield different proteins 878 

29.1 RNA Polymerases Catalyze Transcription 853 29.4 The Discovery of Catalytic RNA Was 
RNA chains are formed de novo and grow in the 
5' -to-3' direction 854 

Revealing in Regard to Both Mechanism and 
Evolution 879 

RNA polymerases backtrack and correct errors 856 

RNA polymerase binds to promoter sites on the DNA 
template to initiate transcription 856 

Sigma subunits of RN A polymerase recognize 
promoter sites 857 

RNA polymerases must unwind the template 
double helix for transcription to take place 858 

Elongation takes place at transcription bubbles 
that move along the DNA templa te 858 

Sequences within the newly transcribed RNA signal 
termination 859 

Chapter 30 Protein Synthesis 887 

30.1 Protein Synthesis Requires the Translation 
of Nucleotide Sequences into Amino Acid 
Sequences 888 
The synthesis of long proteins requires a low error 
frequency 888 

Transfer RNA molecules have a common design 889 

Sorne transfer RNA molecules recognize more than 

So me messenger RNAs directly sense metabolite one codon because of wobble in base-pairing 891 

concentrations 860 30.2 Aminoacyl Transfer RNA Synthetases 
The rho protein helps to terminate the transcription Read the Genetic Code 893 
of so me genes 860 Amino acids are first activated by adenylation 893 
Some antibiotics inhibít transcription 861 Aminoacyl-tRNA synthetases have highly discriminating 
Precursors of transfer and ribosomal RNA are amino acid activation sites 894 
cleaved and chemically modified after transcription 
in prokaryotes 863 

Proofreading by aminoacyl-tRNA synthetases in creases 
the fidelity of protein synthesis 895 

29.2 Transcription in Eukaryotes Is Highly 
Regulated 864 

Synthetases recognize various features of transfer RNA 
molecules 896 

Three types of RNA polymerase synthesize RNA in 
eukaryotic cells 865 

Aminoacyl-tRNA synthetases can be divided into two 
classes 897 

Three common elements can be found in the R A 30.3 The Ribosome 15 the Site of Protein 
polymerase II promoter region 866 Synthesis 897 
The TFIID pro te in complex initiates the assembly of 
the active transcription complex 867 

Ribosomal RNAs (SS, 16S, and 23S rRNA) playa central 
role in protein synthesis 898 

Multiple transcription factors interact with eukaryotic 
promoters 868 

Ribosomes have three tRNA-binding sites that bridge 
the 30s and 50s subunits 900 



x x x Contents 

The start signal is usually AUG preceded by several 
bases that pair with 16S rRNA 

Bacterial protein synthesis is initiated by 
formylmethionyl transfer RNA 

Formylmethionyl-tRNAf is placed in the P site of 
the ribosome in the formation of the 70S 
initiation complex 

Elongation factors deliver aminoacyl-tR TA to the 
ribosome 

Peptidyl transferase catalyzes peptide-bond 
synthesis 

The formation of a peptide bond is followed by the 
GTP-driven translocation oftRNAs and mRNA 

Protein synthesis is terminated by release factors 
that read stop codons 

30.4 Eukaryotic Protein Synthesis Differs 
from Prokaryotic Protein Synthesis Primarily 
in Translation Initiation 
Mutations in initiation factor 2 cause a curious 
pathological condition 

30.5 A Variety of Antibiotics and Toxins Can 
Inhibit Protein Synthesis 
Sorne antibiotics inhibit protein synthesis 

Diphtheria toxin blocks protein synthesis in eukaryotes 
by inhibiting translocation 

Ricin fatally modifies 28S ribosomal RNA 

30.6 Ribosomes Bound to the Endoplasmic 
Reticulum Manufacture Secretory and 
Membrane Proteins 
Signal sequences mark proteins for translocation across 
the endoplasmic reticulum membrane 

T ransport vesicles carry cargo proteins to their final 
destination 

Chapter 31 The Control of Gene Expression 
in Prokaryotes 

31.1 Many DNA-Binding Proteins Recognize 
Specific DNA Sequences 
The helix-turn-helix motif is common to many 
prokaryotic DNA-binding proteins 

31.2 Prokaryotic DNA-Binding Proteins Bind 
Specifically to Regulatory Sites in Operons 
An operon consists of regulatory elements and 
protein -encoding genes 

The lac repressor protein in the absence of lactose 
binds to the operator and blocks transcription 

Ligand binding can induce structural changes in 
regulatory proteins 

The operon is a common regulatory unit in 
prokaryotes 

Transcription can be stimulated by proteins that 
contact R A polymerase 

900 

901 

902 

902 

903 

904 

906 

907 

908 

909 
909 

910 

911 

911 

911 

913 

921 

922 

923 

923 

924 

925 

926 

926 

927 

31.3 Regulatory Circuits Can Result in Switching 
Between Patterns of Gene Expression 928 
Lambda repressor regulates its own express ion 928 

A circuit based on lambda repressor and Cro form 
a genetic switch 929 

Many prokaryotic cells release chemical signals that 
regulate gene expression in other cells 929 

Biofilms are complex communities of prokaryotes 930 

31.4 Gene Expression Can Be Controlled at 
Posttranscriptional Levels 931 
Attenuation is a prokaryotic mechanism for regulating 
transcription through the modulation of nascent 
RNA secondary structure 931 

Chapter 32 The Control of Gene Expression 
in Eukaryotes 937 

32.1 Eukaryotic DNA Is Organized into 
Chromatin 938 

ucleosomes are complexes ofDNA and histones 939 

DNA wraps around histone octamers to form 
nucleosomes 939 

32.2 Transcription Factors Bind DNA and 
Regulate Transcription Initiation 941 
A range ofDNA-binding structures are employed 
by eukaryotic D A -binding proteins 941 

Activation domains interact with other proteins 942 

Multiple transcription factors interact with eukaryotic 
regulatory regions 943 

Enhancers can stimulate transcription in specific 
cell types 943 

Induced pluripotent stem cells can be generated by 
introducing four transcription factors into 
differentiated cells 944 

32.3 The Control of Gene Expression Can 
Require Chromatin Remodeling 944 
The methylation of DNA can alter patterns of gene 
expreSSlOn 945 

Steroids and related hydrophobic molecules pass 
through membranes and bind to DNA-binding receptors 946 

Nuclear hormone receptors regulate transcription by 
recruiting coactivators to the transcription complex 946 

Steroid-hormone receptor s are targets for drugs 948 

Chromatin structure is modulated through covalent 
modifications of histone tails 949 

Histone deacetylases contribute to transcriptional 
repreSSlOn 950 

32.4 Eukaryotic Gene Expression Can Be 
Controlled at Posttranscriptional Levels 951 
Genes associated with iron metabolism are 
translationally regulated in animal s 951 

Small RNAs regulate the expression of many 
eukaryotic genes 953 

Part IV RESPONDING TO 
ENVIRONMENTAL CHANGES 

Chapter:n Sensory Systems 

33.1 A Wide Variety of Organic Compounds 
Are Detected by Olfaction 
Olfaction is mediated by an enormous family of 
seven -transmembrane-helix receptors 

Odorants are decoded by a combinatorial mechanism 

33.2 Taste Is a Combination of Senses That 
Function by Different Mechanisms 
Sequencing of the human genome led to the 
discovery of a large family of 7TM bitter receptors 

A heterodimeric 7TM receptor responds to sweet 
compounds 

Umami, the taste of glutamate and aspartate, is 
mediated by a heterodimeric receptor related to 
the sweet receptor 

Salty tastes are detected primarily by the passage of 
sodium ion s through channels 

Sour tastes arise from the effects of hydrogen 
ions (acids) on channels 

33.3 Photoreceptor Molecules in the Eye 
Detect Visible Light 
Rhodopsin, a specialized 7TM receptor, absorbs 
visible light 

Light absorption induces a specific isomerization of 
bound 11-cis -retinal 

Light-induced lowering of the calcium level 
coordinates recovery 

Color vision is mediated by three cone receptors 
that are homologs of rhodopsin 

Rearrangements in the genes for the green and 
red pigments lead to "color blindness" 

33.4 Hearing Depends on the Speedy 
Detection of Mechanical Stimuli 
Hair cells use a connected bundle of stereocilia to 
detect tiny motions 

Mechanosensory char¡p.els have been identified in 
Drosophila and vertebra tes 

33.5 Touch Includes the Sensing of Pressure, 
Temperature, and Other Factors 
S~udies of capsaicin reveal a receptor for sensing 
hlgh temperatures and other painful stimuli 

More sensory systems remain to be studied 

Chapter 34 The Immune System 

Innate immunity is an evolutionarily ancient 
defense system 

The adaptive immune system responds by using 
the principIes of evolution 

957 

958 

958 

960 

962 

963 

964 

965 

965 

965 

966 

966 

967 

968 

969 

970 

971 

971 

972 

973 

973 

974 

977 

978 

979 

Contents x x xi 

34.1 Antibodies Possess Distinct 
Antigen-Binding and Effect9r Units 981 

34.2 Antibodies Bind Specific Molecules 
Through Hypervariable Loops 983 
The immunoglobulin fold consists of a beta-sandwich 
framework with hypervariable loops 984 

X-ray analyses have revealed how antibodies 
bind antigens 984 

Large antigens bind antibodies with numerous 
interactions 986 

34.3 Diversity Is Generated by Gene 
Rearrangements 987 
J (joining) genes and D (diversity) genes in crease 
antibody diversity l. 987 

More than 108 antibodies can be formed by 
combinatorial association and somatic mutation 988 

The oligomerization of antibodies expressed on the 
surfaces of immature B cells triggers antibcJy secretion 989 

Different classes of antibodies are formed by 
the hopping of V H genes 990 

34.4 Major-Histocompatibility-Complex 
Proteins Present Peptide Antigens on Cell 
Surfaces for Recognition by T-Cell Receptors 991 
Peptides presented by MHC proteins occupy a deep 
groove flanked by alpha helices 992 

T -cell receptor s are antibody-like proteins 
containing variable and constant regions 994 

CD8 on cytotoxic T cells acts in concert with 
T -cell receptors 994 

Helper T cells stimulate cells that display foreign 
peptides bound to class II MHC proteins 996 

Helper T cells rely on the T -cell receptor and CD4 to 
recognize foreign peptides on antigen-presenting cells 996 

MHC proteins are highly diverse 998 

Human immunodeficiency viruses subvert the 
immune system by destroying helper T cells 999 

34.5 The Immune System Contributes to the 
Prevention and the Development of Human 
Diseases 1000 
T cells are subjected to positive and negative 
selection in the thymus 1000 

Autoimmune diseases result from the gene ratio n 
of immune responses against self-antigens 1001 

The immune system plays a role in cancer prevention 1001 

Vaccines are a powerful means to prevent and 
eradicate disease 1002 

Chapter 35 Molecular Motors 1007 

35.1 Most Molecular-Motor Proteins Are 
Members of the P-Loop NTPase Superfamily 1008 
Molecular motors are generally oligomeric proteins 
with an A TPase core and an extended structure 1008 



xxxii Contents 

A TP binding and hydrolysis induce changes in the 
conformation and binding affinity of motor proteins 1010 

35.2 Myosins Move Along Actin Filaments 1012 
Actin is a polar, self-assembling, dynamic polymer 1012 

Myosin head domains bind to actin filaments 1014 

Motions of single motor proteins can be directly 

observed 1014 

Phosphate release triggers the myosin power stroke 1015 

Muscle is a complex of myosin and actin 1015 

The length of the lever arm determines motor 

velocity 1018 

35.3 Kinesin and Dynein Move Along 
Microtubules 1018 
Microtubules are hollow cylindrical polymers 1018 

Kinesin motion is highly processive 1020 

35.4 A Rotary Motor Drives Bacterial Motion 1022 
Bacteria swim by rotating their flagella 1022 

Proton flow drives bacterial flagellar rotation 1022 

Bacterial chemotaxis depends on reversal of the 
direction of flagellar rotation 1024 

Chapter 36 Drug Development 1029 

36.1 The Development of Drugs Presents 
Huge Challenges 1030 
Drug candidates must be potent modulators of 

their targets 1030 

Drugs must have suitable properties to reach their 

targets 1031 

Toxicity can limit drug effectiveness 1036 

36.2 Drug Candidates Can Be Discovered 
by Serendipity, Screening, or Design 1037 
Serendipitous observations can drive drug 
development 1037 

Screening libraries of compounds can yield drugs 

or drug leads 1039 

Drugs can be designed on the basis of 
three-dimensional structural information 
about their targets 1042 

36.3 Analyses of Genomes Hold Great 
Promise for Drug Discovery 1045 
Potential targets can be identified in the human 

proteome 1045 

Animal models can be developed to test the 
validity of potential drug targets 1046 

Potential targets can be identified in the genomes 

of pathogens 1046 

Genetic differences influence individual responses 

to drugs 1047 

36.4 The Development of Drugs Proceeds 
Through Several Stages 1048 
C linical trials are time consuming and expensive 1048 

The evolution of drug resistance can limit 
the utility of drugs for infectious agents 
and cancer 1050 

Answers to Problems Al 

Selected Readings B1 

Index C1 

Biochemistry: An Evolving Science 

CHAPTER 1 

/ 
HN \:" ,. H ~2 

/ .... c/ ' c.,-;"O 
oc H 1;_ 

\ 2 éi n 

/ 
HN 

+ 
H+ 

\:" ... H ~ 2 
/ .... c/ ' c""'o 

OC H / 
\ 2 O 

" H 

Chemistry in action. Human activities require energy. The interconversion 
of different forms of energy requires large biochemical machines 
comprising many thousands of atoms such as the complex shovvn above. 
Yet, the functions of these elaborate assemblies depend on simple 
chemical processes such as the protonation and deprotonation of the 
carboxylic acid groups shown on the right. The photograph is of Nobel 
Prize winners Peter Agre, M.o., and Carol Greider, Ph.o., who used 
biochemical techniques to study the structure and function of proteins. 
[Courtesy of Johns Hopkins Medicine.] 

Biochemistry is the study of the chemistry of life processes. Since the dis­
covery that biological molecules such as urea could be synthesized from 

nonliving components in 1828, scientists have explored the chemistry oflife 
with great intensity. Through these investigations, many of the most funda­
mental mysteries of how living things function at a biochemicallevel have 
now been solved . However, much remains to be investigated. As is often the 
case, each discovety raises at least as many new questions as it answers. 
Furthermore, we are now in an age of unprecedented opportunity for the 
application of our tremendous knowledge of biochemistry to problems in 
medicine, dentistry, agriculture, forensics, anthropology, environmental 
sciences, and many other fields . We begin our journey into biochernistry 
with one of the most startling discoveries of the past century: namely, the 
great unity of allliving things at the biochemicallevel. 

1.1 Biochemical Unity Underlies Biological Diversity 

The biological world is magnificently diverse. The animal kingdom is rich 
with species ranging from nearly microscopic insects to elephants and 
whales. The plant kingdom includes species as small and relatively simple 
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