

colleague. We feel very fortunate to have such gifted partners as Brook, Shelley, Adam, and Jean-Yves on our team.

We are also deeply indebted to Brian White of the University of Massachusetts–Boston, who wrote the new data analysis problems at the end of each chapter.

Many colleagues played a special role through their interest in the project and their timely input. Prominent among these are Laurens Anderson of the University of Wisconsin–Madison; Jeffrey D. Esko of the University of California, San Diego; Jack Kirsch and his students at the University of California, Berkeley; and Dana Aswad, Shiou-Chuan (Sheryl) Tsai, Michael G. Cumsky, and their colleagues (listed below) at the University of California, Irvine. Many others helped us shape this fifth edition with their comments, suggestions, and criticisms. To all of them, we are deeply grateful:

Richard M. Amasino, *University of Wisconsin–Madison*
 Louise E. Anderson, *University of Illinois at Chicago*
 Cheryl Bailey, *University of Nebraska, Lincoln*
 Kenneth Balazovich, *University of Michigan*
 Thomas O. Baldwin, *University of Arizona*
 Vahe Bandarian, *University of Arizona*
 Eugene Barber, *University of Rochester*
 Sebastian Y. Bednarek, *University of Wisconsin–Madison*
 Ramachandra Bhat, *Lincoln University*
 James Blankenship, *Cornell University*
 Sandra J. Bonetti, *Colorado State University, Pueblo*
 Barbara Bowman, *University of California, Berkeley*
 Scott D. Briggs, *Purdue University*
 Jeff Brodsky, *University of Pittsburgh*
 Ben Caldwell, *Missouri Western State University*
 David Camerini, *University of California, Irvine*
 Guillaume Chanfreau, *University of California, Los Angeles*
 Melanie Cocco, *University of California, Irvine*
 Jeffrey Cohlberg, *California State University, Long Beach*
 Kim D. Collins, *University of Maryland*
 Charles T. Dameron, *Duquesne University*
 Richard S. Eisenstein, *University of Wisconsin–Madison*
 Gerald W. Feigenson, *Cornell University*
 Robert H. Fillingame, *University of Wisconsin–Madison*
 Brian Fox, *University of Wisconsin–Madison*
 Gerald D. Frenkel, *Rutgers University*
 Perry Frey, *University of Wisconsin–Madison*
 David E. Graham, *University of Texas–Austin*
 William J. Grimes, *University of Arizona*
 Martyn Gunn, *Texas A&M University*
 Olivia Hanson, *University of Central Oklahoma*
 Amy Hark, *Muhlenberg College*
 Shaun V. Hernandez, *University of Wisconsin–Madison*
 Peter Hinkle, *Cornell University*
 P. Shing Ho, *Oregon State University*
 Charles G. Hoogstraten, *Michigan State University*
 Gerwald Jogl, *Brown University*
 Sir Hans Kornberg, *Boston University*
 Bob Landick, *University of Wisconsin–Madison*
 Patrick D. Larkin, *Texas A&M University, Corpus Christi*
 Ryan P. Liegel, *University of Wisconsin–Madison*
 Maria Linder, *California State University, Fullerton*
 Andy C. LiWang, *Texas A&M University*
 John Makemson, *Florida International University*
 John C. Matthews, *University of Mississippi, School of Pharmacy*
 Benjamin J. McFarland, *Seattle Pacific University*
 Anant Menon, *Weill Cornell Medical College*
 Sabeeha Merchant, *University of California, Los Angeles*

Scott C. Mohr, *Boston University*
 Kimberly Mowry, *Brown University*
 Leisha Mullins, *Texas A&M University*
 Sewite Negash, *California State University, Long Beach*
 Allen W. Nicholson, *Temple University*
 Hiroshi Nikaido, *University of California, Berkeley*
 James Ntambi, *University of Wisconsin–Madison*
 Timothy F. Osborne, *University of California, Irvine*
 José R. Pérez-Castañeda, *University of Seville, Spain*
 Terry Platt, *University of Rochester*
 Wendy Pogozelski, *State University of New York at Geneseo*
 Jonathan Popper, *University of Wisconsin–Madison*
 Thomas Poulos, *University of California, Irvine*
 Jack Preiss, *Michigan State University*
 Anna Radominska-Pandya, *University of Arkansas*
 Ron Raines, *University of Wisconsin–Madison*
 Tom A. Rapoport, *Harvard Medical School*
 Jason J. Reddick, *University of North Carolina, Greensboro*
 Mary Roberts, *Boston College*
 Ingrid K. Ruf, *University of California, Irvine*
 Aboozar Soleimani, *Tehran University, Iran*
 Mark Spaller, *Wayne State University*
 Stephen Spiro, *University of Texas at Dallas*
 Narasimha Sreerama, *Colorado State University*
 Jon D. Stewart, *University of Florida*
 Koni Stone, *California State University, Stanislaus*
 Jon R. Stoltzfus, *Michigan State University*
 Jeremy Thorner, *University of California, Berkeley*
 Dean R. Tolan, *Boston University*
 Sandra L. Turchi, *Millersville University*
 Manuel Varela, *Eastern New Mexico University*
 Bob Warburton, *Shepherd University*
 Tracy Ware, *Salem State College*
 Susan Weintraub, *University of Texas, Health Science Center*
 Michael Yaffe, *Massachusetts Institute of Technology*

We lack the space here to acknowledge all the other individuals whose special efforts went into this book. We offer instead our sincere thanks—and the finished book that they helped guide to completion. We, of course, assume full responsibility for errors of fact or emphasis.

We want especially to thank our students at the University of Wisconsin–Madison for their numerous comments and suggestions. If something in the book does not work, they are never shy about letting us know it. We are grateful to the students and staff of our research groups and of the Center for Biology Education, who helped us balance the competing demands on our time; to our colleagues in the Department of Biochemistry at the University of Wisconsin–Madison, who helped us with advice and criticism; and to the many students and teachers who have written to suggest ways of improving the book. We hope our readers will continue to provide input for future editions.

Finally, we express our deepest appreciation to our wives, Brook and Beth, and our families, who showed extraordinary patience with, and support for, our book writing.

David L. Nelson
 Michael M. Cox
 Madison, Wisconsin
 January 2008

Contents in Brief

Preface	viii
1 The Foundations of Biochemistry	1
I STRUCTURE AND CATALYSIS 41	
2 Water	43
3 Amino Acids, Peptides, and Proteins	71
4 The Three-Dimensional Structure of Proteins	113
5 Protein Function	153
6 Enzymes	183
7 Carbohydrates and Glycobiology	235
8 Nucleotides and Nucleic Acids	271
9 DNA-Based Information Technologies	303
10 Lipids	343
11 Biological Membranes and Transport	371
12 Biosignaling	417
II BIOENERGETICS AND METABOLISM 485	
13 Bioenergetics and Biochemical Reaction Types	489
14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway	527
15 Principles of Metabolic Regulation	569
16 The Citric Acid Cycle	615
17 Fatty Acid Catabolism	647
18 Amino Acid Oxidation and the Production of Urea	673
19 Oxidative Phosphorylation and Photophosphorylation	707
20 Carbohydrate Biosynthesis in Plants and Bacteria	773
21 Lipid Biosynthesis	805
22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules	851
23 Hormonal Regulation and Integration of Mammalian Metabolism	901
III INFORMATION PATHWAYS 945	
24 Genes and Chromosomes	947
25 DNA Metabolism	975
26 RNA Metabolism	1021
27 Protein Metabolism	1065
28 Regulation of Gene Expression	1115
Appendix A Common Abbreviations in the Biochemical Research Literature A-1	
Appendix B Abbreviated Solutions to Problems AS-1	
Glossary G-1	
Credits C-1	
Index I-1	

Contents

1 The Foundations of Biochemistry	1
1.1 Cellular Foundations	
Cells Are the Structural and Functional Units of All Living Organisms	3
Cellular Dimensions Are Limited by Diffusion	3
There Are Three Distinct Domains of Life	4
<i>Escherichia coli</i> Is the Most-Studied Bacterium	5
Eukaryotic Cells Have a Variety of Membranous Organelles, Which Can Be Isolated for Study	7
The Cytoplasm Is Organized by the Cytoskeleton and Is Highly Dynamic	8
Cells Build Supramolecular Structures	9
In Vitro Studies May Overlook Important Interactions among Molecules	10
1.2 Chemical Foundations	
Biomolecules Are Compounds of Carbon with a Variety of Functional Groups	11
Cells Contain a Universal Set of Small Molecules	13
Box 1-1 Molecular Weight, Molecular Mass, and Their Correct Units	14
Macromolecules Are the Major Constituents of Cells	14
Three-Dimensional Structure Is Described by Configuration and Conformation	15
Box 1-2 Louis Pasteur and Optical Activity: <i>In Vino, Veritas</i>	17
Interactions between Biomolecules Are Stereospecific	18
1.3 Physical Foundations	
Living Organisms Exist in a Dynamic Steady State, Never at Equilibrium with Their Surroundings	20
Organisms Transform Energy and Matter from Their Surroundings	20
Box 1-3 Entropy: The Advantages of Being Disorganized	21
The Flow of Electrons Provides Energy for Organisms	22
Creating and Maintaining Order Requires Work and Energy	22
Energy Coupling Links Reactions in Biology	22
K_{eq} and ΔG° Are Measures of a Reaction's Tendency to Proceed Spontaneously	24
Enzymes Promote Sequences of Chemical Reactions	25
Metabolism Is Regulated to Achieve Balance and Economy	26
1.4 Genetic Foundations	
Genetic Continuity Is Vested in Single DNA Molecules	27
The Structure of DNA Allows for Its Replication and Repair with Near-Perfect Fidelity	28
The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures	29

1.5 Evolutionary Foundations	29	2.4 Water as a Reactant	65
Changes in the Hereditary Instructions	29	2.5 The Fitness of the Aqueous Environment for Living Organisms	65
Allow Evolution	30		
Biomolecules First Arose by Chemical Evolution	31		
RNA or Related Precursors May Have Been the First Genes and Catalysts	32	3 Amino Acids, Peptides, and Proteins	71
Biological Evolution Began More Than Three and a Half Billion Years Ago	32		
The First Cell Probably Used Inorganic Fuels	32	3.1 Amino Acids	72
Eukaryotic Cells Evolved from Simpler Precursors in Several Stages	33	Amino Acids Share Common Structural Features	72
Molecular Anatomy Reveals Evolutionary Relationships	33	The Amino Acid Residues in Proteins Are L Stereoisomers	74
Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes	35	Amino Acids Can Be Classified by R Group	74
Genomic Comparisons Have Increasing Importance in Human Biology and Medicine	35	Box 3-1 Methods: Absorption of Light by Molecules: The Lambert-Beer Law	76
		Uncommon Amino Acids Also Have Important Functions	77
		Amino Acids Can Act as Acids and Bases	78
		Amino Acids Have Characteristic Titration Curves	79
		Titration Curves Predict the Electric Charge of Amino Acids	80
		Amino Acids Differ in Their Acid-Base Properties	81
		3.2 Peptides and Proteins	82
		Peptides Are Chains of Amino Acids	82
		Peptides Can Be Distinguished by Their Ionization Behavior	82
		Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes and Compositions	83
		Some Proteins Contain Chemical Groups Other Than Amino Acids	84
		3.3 Working with Proteins	85
		Proteins Can Be Separated and Purified	85
		Proteins Can Be Separated and Characterized by Electrophoresis	88
		Unseparated Proteins Can Be Quantified	91
		3.4 The Structure of Proteins: Primary Structure	92
		The Function of a Protein Depends on Its Amino Acid Sequence	93
		The Amino Acid Sequences of Millions of Proteins Have Been Determined	93
		Short Polypeptides Are Sequenced with Automated Procedures	94
		Large Proteins Must Be Sequenced in Smaller Segments	95
		Amino Acid Sequences Can Also Be Deduced by Other Methods	98
		Box 3-2 Methods: Investigating Proteins with Mass Spectrometry	98
		Small Peptides and Proteins Can Be Chemically Synthesized	100
		Amino Acid Sequences Provide Important Biochemical Information	102
		Protein Sequences Can Elucidate the History of Life on Earth	102
		Box 3-3 Consensus Sequences and Sequence Logos	103

Box 2-1 Medicine: On Being One's Own Rabbit (Don't Try This at Home!)

4 The Three-Dimensional Structure of Proteins	113	Protein Structure Affects How Ligands Bind	158
4.1 Overview of Protein Structure	113	Hemoglobin Transports Oxygen in Blood	158
A Protein's Conformation Is Stabilized Largely by Weak Interactions	114	Hemoglobin Subunits Are Structurally Similar to Myoglobin	159
The Peptide Bond Is Rigid and Planar	115	Hemoglobin Undergoes a Structural Change on Binding Oxygen	160
		Hemoglobin Binds Oxygen Cooperatively	160
		Cooperative Ligand Binding Can Be Described Quantitatively	162
Box 5-1 Medicine: Carbon Monoxide: A Stealthy Killer	163		
Two Models Suggest Mechanisms for Cooperative Binding	165		
Hemoglobin Also Transports H ⁺ and CO ₂	165		
Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate	167		
Sickle-Cell Anemia Is a Molecular Disease of Hemoglobin	168		
5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins	170		
The Immune Response Features a Specialized Array of Cells and Proteins	170		
Antibodies Have Two Identical Antigen-Binding Sites	171		
Antibodies Bind Tightly and Specifically to Antigen	173		
The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures	173		
5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors	175		
The Major Proteins of Muscle Are Myosin and Actin	175		
Additional Proteins Organize the Thin and Thick Filaments into Ordered Structures	176		
Myosin Thick Filaments Slide along Actin Thin Filaments	178		
6 Enzymes	183		
6.1 An Introduction to Enzymes	183		
Most Enzymes Are Proteins	184		
Enzymes Are Classified by the Reactions They Catalyze	184		
6.2 How Enzymes Work	186		
Enzymes Affect Reaction Rates, Not Equilibria	186		
Reaction Rates and Equilibria Have Precise Thermodynamic Definitions	188		
A Few Principles Explain the Catalytic Power and Specificity of Enzymes	188		
Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State	189		
Binding Energy Contributes to Reaction Specificity and Catalysis	191		
Specific Catalytic Groups Contribute to Catalysis	192		
6.3 Enzyme Kinetics as an Approach to Understanding Mechanism	194		
Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions	194		
The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively	195		

Box 6–1 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot	197	7.2 Polysaccharides	244	8.4 Other Functions of Nucleotides	296	Box 10–1 Sperm Whales: Fatheads of the Deep	347
Kinetic Parameters Are Used to Compare Enzyme Activities	197	Some Homopolysaccharides Are Stored Forms of Fuel	245	Nucleotides Carry Chemical Energy in Cells	296	Partial Hydrogenation of Cooking Oils Produces Trans Fatty Acids	347
Many Enzymes Catalyze Reactions with Two or More Substrates	200	Some Homopolysaccharides Serve Structural Roles	246	Adenine Nucleotides Are Components of Many Enzyme Cofactors	297	Waxes Serve as Energy Stores and Water Repellents	349
Pre-Steady State Kinetics Can Provide Evidence for Specific Reaction Steps	201	Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding	247	Some Nucleotides Are Regulatory Molecules	298		
Enzymes Are Subject to Reversible or Irreversible Inhibition	201	Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides	249				
Box 6–2 Kinetic Tests for Determining Inhibition Mechanisms	202	Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix	249				
Enzyme Activity Depends on pH	204						
6.4 Examples of Enzymatic Reactions	205	7.3 Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids	252	9 DNA-Based Information Technologies	303	10.2 Structural Lipids in Membranes	349
The Chymotrypsin Mechanism Involves Acylation and Deacylation of a Ser Residue	205	Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix	252	9.1 DNA Cloning: The Basics	304	Glycerophospholipids Are Derivatives of Phosphatidic Acid	350
Box 6–3 Evidence for Enzyme–Transition State Complementarity	210	Glycoproteins Have Covalently Attached Oligosaccharides	255	Restriction Endonucleases and DNA Ligase Yield Recombinant DNA	304	Some Glycerophospholipids Have Ether-Linked Fatty Acids	350
Hexokinase Undergoes Induced Fit on Substrate Binding	212	Glycolipids and Lipopolysaccharides Are Membrane Components	256	Cloning Vectors Allow Amplification of Inserted DNA Segments	307	Chloroplasts Contain Galactolipids and Sulfolipids	352
The Enolase Reaction Mechanism Requires Metal Ions	213	7.4 Carbohydrates as Informational Molecules: The Sugar Code	257	Specific DNA Sequences Are Detectable by Hybridization	310	Archaea Contain Unique Membrane Lipids	352
Lysozyme Uses Two Successive Nucleophilic Displacement Reactions	213	Lectins Are Proteins That Read the Sugar Code and Mediate Many Biological Processes	258	Expression of Cloned Genes Produces Large Quantities of Protein	312	Sphingolipids Are Derivatives of Sphingosine	352
An Understanding of Enzyme Mechanism Drives Important Advances in Medicine	216	Lectin-Carbohydrate Interactions Are Highly Specific and Often Polyvalent	261	Alterations in Cloned Genes Produce Modified Proteins	312	Sphingolipids at Cell Surfaces Are Sites of Biological Recognition	354
6.5 Regulatory Enzymes	220	7.5 Working with Carbohydrates	263	Terminal Tags Provide Binding Sites for Affinity Purification	313	Phospholipids and Sphingolipids Are Degraded in Lysosomes	355
Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding	220	8 Nucleotides and Nucleic Acids	271	9.2 From Genes to Genomes	315	Sterols Have Four Fused Carbon Rings	355
In Many Pathways, Regulated Steps Are Catalyzed by Allosteric Enzymes	221	8.1 Some Basics	271	DNA Libraries Provide Specialized Catalogs of Genetic Information	315	Box 10–2 Medicine: Abnormal Accumulations of Membrane Lipids: Some Inherited Human Diseases	356
The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior	222	Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses	271	The Polymerase Chain Reaction Amplifies Specific DNA Sequences	317		
Some Enzymes are Regulated by Reversible Covalent Modification	223	Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids	274	Genome Sequences Provide the Ultimate Genetic Libraries	317		
Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes	224	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	276	Box 9–1 A Potent Weapon in Forensic Medicine	319		
Multiple Phosphorylations Allow Exquisite Regulatory Control	225	8.2 Nucleic Acid Structure	277	9.3 From Genomes to Proteomes	324		
Some Enzymes and Other Proteins Are Regulated by Proteolytic Cleavage of an Enzyme Precursor	226	DNA Is a Double Helix that Stores Genetic Information	278	Sequence or Structural Relationships Provide Information on Protein Function	324		
Some Regulatory Enzymes Use Several Regulatory Mechanisms	227	DNA Can Occur in Different Three-Dimensional Forms	280	Cellular Expression Patterns Can Reveal the Cellular Function of a Gene	325		
7 Carbohydrates and Glycobiology	235	Certain DNA Sequences Adopt Unusual Structures	281	Detection of Protein-Protein Interactions Helps to Define Cellular and Molecular Function	328		
7.1 Monosaccharides and Disaccharides	235	Messenger RNAs Code for Polypeptide Chains	283	9.4 Genome Alterations and New Products of Biotechnology	330		
The Two Families of Monosaccharides Are Aldoses and Ketoses	236	Many RNAs Have More Complex Three-Dimensional Structures	284	A Bacterial Plant Parasite Aids Cloning in Plants	330		
Monosaccharides Have Asymmetric Centers	236	8.3 Nucleic Acid Chemistry	287	Manipulation of Animal Cell Genomes Provides Information on Chromosome Structure and Gene Expression	332		
The Common Monosaccharides Have Cyclic Structures	238	Double-Helical DNA and RNA Can Be Denatured	287	Box 9–2 Medicine: The Human Genome and Human Gene Therapy	335		
Organisms Contain a Variety of Hexose Derivatives	240	Nucleic Acids from Different Species Can Form Hybrids	288	New Technologies Promise to Expedite the Discovery of New Pharmaceuticals	335		
Monosaccharides Are Reducing Agents	241	Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations	289	Recombinant DNA Technology Yields New Products and Challenges	337		
Box 7–1 Medicine: Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes	241	Some Bases of DNA Are Methylated	292				
Disaccharides Contain a Glycosidic Bond	243	The Sequences of Long DNA Strands Can Be Determined	292				
		The Chemical Synthesis of DNA Has Been Automated	294	10 Lipids	343		
			294	10.1 Storage Lipids	343		
				Fatty Acids Are Hydrocarbon Derivatives	343		
				Triacylglycerols Are Fatty Acid Esters of Glycerol	346		
				Triacylglycerols Provide Stored Energy and Insulation	346		

The Topology of an Integral Membrane Protein Can Sometimes Be Predicted from Its Sequence	378	12.2 G Protein-Coupled Receptors and Second Messengers	423	12.10 Sensory Transduction in Vision, Olfaction, and Gustation	461	Box 13-1 Firefly Flashes: Glowing Reports of ATP	509
Covalently Attached Lipids Anchor Some Membrane Proteins	379	The β -Adrenergic Receptor System	423	The Visual System Uses Classic GPCR Mechanisms	462	ATP Energizes Active Transport and Muscle Contraction	509
11.2 Membrane Dynamics	381	Acts through the Second Messenger cAMP	423	Excited Rhodopsin Acts through the G Protein	463	Transphosphorylations between Nucleotides	510
Acyl Groups in the Bilayer Interior Are Ordered to Varying Degrees	381	Box 12-2 Medicine: G Proteins: Binary Switches in Health and Disease	425	Transducin to Reduce the cGMP Concentration	463	Occur in All Cell Types	510
Transbilayer Movement of Lipids Requires Catalysis	381	Several Mechanisms Cause Termination of the β -Adrenergic Response	430	The Visual Signal Is Quickly Terminated	464	Inorganic Polyphosphate Is a Potential	511
Lipids and Proteins Diffuse Laterally in the Bilayer	383	The β -Adrenergic Receptor Is Desensitized by Phosphorylation and by Association with Arrestin	430	Cone Cells Specialize in Color Vision	465	Phosphoryl Group Donor	511
Sphingolipids and Cholesterol Cluster Together in Membrane Rafts	384	Cyclic AMP Acts as a Second Messenger for Many Regulatory Molecules	431	Vertebrate Olfaction and Gustation Use Mechanisms Similar to the Visual System	465		
Box 11-1 Methods: Atomic Force Microscopy to Visualize Membrane Proteins	385	Diacylglycerol, Inositol Trisphosphate, and Ca^{2+} Have Related Roles as Second Messengers	432	Box 12-4 Medicine: Color Blindness: John Dalton's Experiment from the Grave	466	13.4 Biological Oxidation-Reduction Reactions	512
Membrane Curvature and Fusion Are Central to Many Biological Processes	385	Box 12-3 Methods: FRET: Biochemistry Visualized in a Living Cell	434	GPCRs of the Sensory Systems Share Several Features with GPCRs of Hormone Signaling Systems	467	The Flow of Electrons Can Do Biological Work	512
Integral Proteins of the Plasma Membrane Are Involved in Surface Adhesion, Signaling, and Other Cellular Processes	387	Calcium Is a Second Messenger That May Be Localized in Space and Time	436	12.11 Regulation of the Cell Cycle by Protein Kinases	469	Oxidation-Reductions Can Be Described as Half-Reactions	512
11.3 Solute Transport across Membranes	389	12.3 Receptor Tyrosine Kinases	439	The Cell Cycle Has Four Stages	469	Biological Oxidations Often Involve Dehydrogenation	513
Passive Transport Is Facilitated by Membrane Proteins	390	Stimulation of the Insulin Receptor Initiates a Cascade of Protein Phosphorylation Reactions	439	Levels of Cyclin-Dependent Protein Kinases Oscillate	469	Reduction Potentials Measure Affinity for Electrons	514
Transporters Can Be Grouped into Superfamilies Based on Their Structures	391	The Membrane Phospholipid PIP_3 Functions at a Branch in Insulin Signaling	441	CDKs Regulate Cell Division by Phosphorylating Critical Proteins	472	Standard Reduction Potentials Can Be Used to Calculate Free-Energy Change	515
The Glucose Transporter of Erythrocytes Mediates Passive Transport	391	The JAK-STAT Signaling System Also Involves Tyrosine Kinase Activity	443	12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death	473	Cellular Oxidation of Glucose to Carbon Dioxide	515
The Chloride-Bicarbonate Exchanger Catalyzes Electroneutral Cotransport of Anions across the Plasma Membrane	393	Cross Talk among Signaling Systems Is Common and Complex	444	Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle	473	Requires Specialized Electron Carriers	516
Box 11-2 Medicine: Defective Glucose and Water Transport in Two Forms of Diabetes	394	12.4 Receptor Guanylyl Cyclases, cGMP, and Protein Kinase G	445	Defects in Certain Genes Remove Normal Restraints on Cell Division	474	A Few Types of Coenzymes and Proteins Serve as Universal Electron Carriers	516
Active Transport Results in Solute Movement against a Concentration or Electrochemical Gradient	394	12.5 Multivalent Adaptor Proteins and Membrane Rafts	446	Box 12-5 Medicine: Development of Protein Kinase Inhibitors for Cancer Treatment	475	NADH and NADPH Act with Dehydrogenases as Soluble Electron Carriers	516
P-Type ATPases Undergo Phosphorylation during Their Catalytic Cycles	395	Protein Modules Bind Phosphorylated Tyr, Ser, or Thr Residues in Partner Proteins	446	Apoptosis Is Programmed Cell Suicide	477	Dietary Deficiency of Niacin, the Vitamin Form of NAD and NADP, Causes Pellagra	519
F-Type ATPases Are Reversible, ATP-Driven Proton Pumps	396	Membrane Rafts and Caveolae Segregate Signaling Proteins	449	14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway	527	Flavin Nucleotides Are Tightly Bound in Flavoproteins	519
ABC Transporters Use ATP to Drive the Active Transport of a Wide Variety of Substrates	400	12.6 Gated Ion Channels	449				
Ion Gradients Provide the Energy for Secondary Active Transport	400	Ion Channels Underlie Electrical Signaling in Excitable Cells	449	14.1 Glycolysis	528		
Box 11-3 Medicine: A Defective Ion Channel in Cystic Fibrosis	401	Voltage-Gated Ion Channels Produce Neuronal Action Potentials	451	An Overview: Glycolysis Has Two Phases	528		
Aquaporins Form Hydrophilic Transmembrane Channels for the Passage of Water	404	The Acetylcholine Receptor Is a Ligand-Gated Ion Channel	453	The Preparatory Phase of Glycolysis Requires ATP	531		
Ion-Selective Channels Allow Rapid Movement of Ions across Membranes	406	Neurons Have Receptor Channels That Respond to Different Neurotransmitters	453	The Payoff Phase of Glycolysis Yields ATP and NADH	535		
Ion-Channel Function Is Measured Electrically	407	Toxins Target Ion Channels	454	The Overall Balance Sheet Shows a Net Gain of ATP	538		
The Structure of a K^+ Channel Reveals the Basis for Its Specificity	407	12.7 Integrins: Bidirectional Cell Adhesion Receptors	455	Glycolysis Is under Tight Regulation	539		
Gated Ion Channels Are Central in Neuronal Function	410	12.8 Regulation of Transcription by Steroid Hormones	456	Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus	539		
Defective Ion Channels Can Have Severe Physiological Consequences	410	12.9 Signaling in Microorganisms and Plants	457	Box 14-1 Medicine: High Rate of Glycolysis in Tumors Suggests Targets for Chemotherapy and Facilitates Diagnosis	540		
12 Biosignaling	419	Bacterial Signaling Entails Phosphorylation in a Two-Component System	457				
12.1 General Features of Signal Transduction	419	Signaling Systems of Plants Have Some of the Same Components Used by Microbes and Mammals	458	14.2 Feeder Pathways for Glycolysis	543		
Box 12-1 Methods: Scatchard Analysis Quantifies the Receptor-Ligand Interaction	421	Plants Detect Ethylene through a Two-Component System and a MAPK Cascade	460	Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides	543		
		Receptorlike Protein Kinases Transduce Signals from Peptides and Brassinosteroids	460	Endogenous Glycogen and Starch Are Degraded by Phosphorylation	544		
				Other Monosaccharides Enter the Glycolytic Pathway at Several Points	545		
				14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation	546		
				Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation	546		
				Ethanol Is the Reduced Product in Ethanol-Fermentation	547		
				Box 14-2 Athletes, Alligators, and Coelacanths: Glycolysis at Limiting Concentrations of Oxygen	548		
				Box 14-3 Ethanol Fermentations: Brewing Beer and Producing Biofuels	549		
				Thiamine Pyrophosphate Carries "Active Acetaldehyde" Groups	549		

Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals	550	15.3 Coordinated Regulation of Glycolysis and Gluconeogenesis	582	The Pyruvate Dehydrogenase Complex Consists of Three Distinct Enzymes	618	Complete Oxidation of Odd-Number Fatty Acids Requires Three Extra Reactions	657
14.4 Gluconeogenesis	551	Hexokinase Isozymes of Muscle and Liver Are Affected Differently by Their Product, Glucose 6-Phosphate	583	In Substrate Channeling, Intermediates Never Leave the Enzyme Surface	619	Box 17–2 Coenzyme B₁₂: A Radical Solution to a Perplexing Problem	658
Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions	553	Box 15–2 Isozymes: Different Proteins That Catalyze the Same Reaction	584	16.2 Reactions of the Citric Acid Cycle	620	Fatty Acid Oxidation Is Tightly Regulated	660
Conversion of Fructose 1,6-Bisphosphate to Fructose 6-Phosphate Is the Second Bypass	556	Hexokinase IV (Glucokinase) and Glucose 6-Phosphatase Are Transcriptionally Regulated	585	Transcription Factors Turn on the Synthesis of Proteins for Lipid Catabolism	660		
Conversion of Glucose 6-Phosphate to Glucose Is the Third Bypass	556	Phosphofructokinase-1 and Fructose 1,6-Bisphosphatase Are Reciprocally Regulated	585	Genetic Defects in Fatty Acyl-CoA Dehydrogenases Cause Serious Disease	661		
Gluconeogenesis Is Energetically Expensive, but Essential	556	Fructose 2,6-Bisphosphate Is a Potent Allosteric Regulator of PFK-1 and FBPase-1	587	Peroxisomes Also Carry Out β Oxidation	662		
Citric Acid Cycle Intermediates and Some Amino Acids Are Glucogenic	557	Xylulose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism	588	Plant Peroxisomes and Glyoxysomes Use Acetyl-CoA from β Oxidation as a Biosynthetic Precursor	662		
Mammals Cannot Convert Fatty Acids to Glucose	557	The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP	588	The β -Oxidation Enzymes of Different Organelles Have Diverged during Evolution	663		
Glycolysis and Gluconeogenesis Are Reciprocally Regulated	557	The Gluconeogenic Conversion of Pyruvate to Phosphoenol Pyruvate Is Under Multiple Types of Regulation	590	The ω Oxidation of Fatty Acids Occurs in the Endoplasmic Reticulum	664		
14.5 Pentose Phosphate Pathway of Glucose Oxidation	558	Transcriptional Regulation of Glycolysis and Gluconeogenesis Changes the Number of Enzyme Molecules	590	Phytanic Acid Undergoes α Oxidation in Peroxisomes	664		
Box 14–4 Medicine: Why Pythagoras Wouldn't Eat Falafel: Glucose 6-Phosphate Dehydrogenase Deficiency	559	Box 15–3 Medicine: Genetic Mutations That Lead to Rare Forms of Diabetes	593	17.3 Ketone Bodies	666		
The Oxidative Phase Produces Pentose Phosphates and NADPH	559	15.4 The Metabolism of Glycogen in Animals	594	Ketone Bodies, Formed in the Liver, Are Exported to Other Organs as Fuel	666		
The Nonoxidative Phase Recycles Pentose Phosphates to Glucose 6-Phosphate	560	Glycogen Breakdown Is Catalyzed by Glycogen Phosphorylase	595	Ketone Bodies Are Overproduced in Diabetes and during Starvation	667		
Wernicke-Korsakoff Syndrome Is Exacerbated by a Defect in Transketolase	563	Glucose 1-Phosphate Can Enter Glycolysis or, in Liver, Replenish Blood Glucose	596				
Glucose 6-Phosphate Is Partitioned between Glycolysis and the Pentose Phosphate Pathway	563	The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis	596				
15 Principles of Metabolic Regulation	569	Box 15–4 Carl and Gerty Cori: Pioneers in Glycogen Metabolism and Disease	598	16.3 Regulation of the Citric Acid Cycle	635		
15.1 Regulation of Metabolic Pathways	570	Glycogenin Primes the Initial Sugar Residues in Glycogen	601	Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by Allosteric and Covalent Mechanisms	635		
Cells and Organisms Maintain a Dynamic Steady State	571	15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown	602	The Citric Acid Cycle Is Regulated at Its Three Exergonic Steps	636		
Both the Amount and the Catalytic Activity of an Enzyme Can Be Regulated	571	Glycogen Phosphorylase Is Regulated Allosterically and Hormonally	603	Substrate Channeling through Multienzyme Complexes May Occur in the Citric Acid Cycle	637		
Reactions Far from Equilibrium in Cells Are Common Points of Regulation	574	Glycogen Synthase Is Also Regulated by Phosphorylation and Dephosphorylation	605	Some Mutations in Enzymes of the Citric Acid Cycle Lead to Cancer	637		
Adenine Nucleotides Play Special Roles in Metabolic Regulation	575	Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin	606				
15.2 Analysis of Metabolic Control	577	Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism	606				
The Contribution of Each Enzyme to Flux through a Pathway Is Experimentally Measurable	578	Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally	606				
The Control Coefficient Quantifies the Effect of a Change in Enzyme Activity on Metabolite Flux through a Pathway	578	Carbohydrate and Lipid Metabolism Are Integrated by Hormonal and Allosteric Mechanisms	608				
Box 15–1 Methods: Metabolic Control Analysis: Quantitative Aspects	579	16 The Citric Acid Cycle	615	17 Fatty Acid Catabolism	647		
The Elasticity Coefficient Is Related to an Enzyme's Responsiveness to Changes in Metabolite or Regulator Concentrations	580	16.1 Production of Acetyl-CoA (Activated Acetate)	616	17.1 Digestion, Mobilization, and Transport of Fats	648		
The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a Pathway	581	Pyruvate Is Oxidized to Acetyl-CoA and CO ₂	616	Dietary Fats Are Absorbed in the Small Intestine	648		
Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising Results	581	The Pyruvate Dehydrogenase Complex Requires Five Coenzymes	617	Hormones Trigger Mobilization of Stored Triacylglycerols	649		
Metabolic Control Analysis Suggests a General Method for Increasing Flux through a Pathway	582	17.2 Oxidation of Fatty Acids	652	Fatty Acids Are Activated and Transported into Mitochondria	650		
		The β Oxidation of Saturated Fatty Acids Has Four Basic Steps	653	17.2 Oxidation of Fatty Acids	652		
		The Four β -Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP	654	The β Oxidation of Saturated Fatty Acids Has Four Basic Steps	653		
		Box 17–1 Fat Bears Carry Out β Oxidation in Their Sleep	655	The Four β -Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP	654		
		Acetyl-CoA Can Be Further Oxidized in the Citric Acid Cycle	655	Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions	656		
		Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions	656				

Steroid Hormones Are Formed by Side-Chain Cleavage and Oxidation of Cholesterol	844	Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	888	Insulin Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation	934	DNA Replication Requires Many Enzymes and Protein Factors	984
Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates	845	Ribonucleotides Are the Precursors of Deoxyribonucleotides	888	Adiponectin Acts through AMPK to Increase Insulin Sensitivity	934	Replication of the <i>E. coli</i> Chromosome	985
22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules	851	Thymidylate Is Derived from dCDP and dUMP	890	Diet Regulates the Expression of Genes Central to Maintaining Body Mass	936	Proceeds in Stages	985
22.1 Overview of Nitrogen Metabolism	852	Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively	892	Short-Term Eating Behavior Is Influenced by Ghrelin and PYY ₃₋₃₆	937	Replication in Eukaryotic Cells Is Both Similar and More Complex	991
The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen	852	Purine and Pyrimidine Bases Are Recycled by Salvage Pathways	893	23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes	938	Viral DNA Polymerases Provide Targets for Antiviral Therapy	992
Nitrogen Is Fixed by Enzymes of the Nitrogenase Complex	852	Excess Uric Acid Causes Gout	893	In Type 2 Diabetes the Tissues Become Insensitive to Insulin	938	25.2 DNA Repair	993
Box 22-1 Unusual Lifestyles of the Obscure but Abundant	853	Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	894	Type 2 Diabetes Is Managed with Diet, Exercise, and Medication	939	Mutations Are Linked to Cancer	993
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine	857	III INFORMATION PATHWAYS	945	All Cells Have Multiple DNA Repair Systems	993		
Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	857	23 Hormonal Regulation and Integration of Mammalian Metabolism	901	The Interaction of Replication Forks with DNA Damage Can Lead to Error-Prone Translesion DNA Synthesis	1001		
Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides	857	23.1 Hormones: Diverse Structures for Diverse Functions	901	Box 25-1 Medicine: DNA Repair and Cancer	1003		
22.2 Biosynthesis of Amino Acids	860	The Detection and Purification of Hormones Requires a Bioassay	902	25.3 DNA Recombination	1003		
α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	861	Box 23-1 Medicine: How Is a Hormone Discovered?	903	Homologous Genetic Recombination Has Several Functions	1004		
Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate	863	The Arduous Path to Purified Insulin	903	Recombination during Meiosis Is Initiated with Double-Strand Breaks	1005		
Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate	865	Hormones Act through Specific High-Affinity Cellular Receptors	904	Recombination Requires a Host of Enzymes and Other Proteins	1007		
Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	865	Hormones Are Chemically Diverse	906	All Aspects of DNA Metabolism Come Together to Repair Stalled Replication Forks	1009		
Histidine Biosynthesis Uses Precursors of Purine Biosynthesis	869	Hormone Release Is Regulated by a Hierarchy of Neuronal and Hormonal Signals	909	Site-Specific Recombination Results in Precise DNA Rearrangements	1010		
Amino Acid Biosynthesis Is under Allosteric Regulation	872	23.2 Tissue-Specific Metabolism: The Division of Labor	912	Complete Chromosome Replication Can Require Site-Specific Recombination	1012		
22.3 Molecules Derived from Amino Acids	873	The Liver Processes and Distributes Nutrients	912	Transposable Genetic Elements Move from One Location to Another	1013		
Glycine Is a Precursor of Porphyrins	873	Adipose Tissues Store and Supply Fatty Acids	916	Immunoglobulin Genes Assemble by Recombination	1014		
Box 22-2 Medicine: On Kings and Vampires	875	Brown Adipose Tissue Is Thermogenic	917	26 RNA Metabolism	1021		
Heme Is the Source of Bile Pigments	875	Muscles Use ATP for Mechanical Work	918	26.1 DNA-Dependent Synthesis of RNA	1022		
Amino Acids Are Precursors of Creatine and Glutathione	876	The Brain Uses Energy for Transmission of Electrical Impulses	920	RNA Is Synthesized by RNA Polymerases	1022		
D-Amino Acids Are Found Primarily in Bacteria	877	Blood Carries Oxygen, Metabolites, and Hormones	920	RNA Synthesis Begins at Promoters	1025		
Aromatic Amino Acids Are Precursors of Many Plant Substances	878	23.3 Hormonal Regulation of Fuel Metabolism	922	Box 26-1 Methods: RNA Polymerase Leaves Its Footprint on a Promoter	1026		
Biological Amines Are Products of Amino Acid Decarboxylation	878	Insulin Counters High Blood Glucose	922	Transcription Is Regulated at Several Levels	1028		
Box 22-3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse	880	Pancreatic β Cells Secrete Insulin in Response to Changes in Blood Glucose	923	Specific Sequences Signal Termination of RNA Synthesis	1029		
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	882	Glucagon Counters Low Blood Glucose	925	Eukaryotic Cells Have Three Kinds of Nuclear RNA Polymerases	1030		
22.4 Biosynthesis and Degradation of Nucleotides	882	During Fasting and Starvation, Metabolism Shifts to Provide Fuel for the Brain	926	RNA Polymerase II Requires Many Other Protein Factors for Its Activity	1030		
De Novo Purine Nucleotide Synthesis Begins with PRPP	883	Epinephrine Signals Impending Activity	928	DNA-Dependent RNA Polymerase Undergoes Selective Inhibition	1033		
Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	885	Cortisol Signals Stress, Including Low Blood Glucose	929	26.2 RNA Processing	1033		
Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate	886	Diabetes Mellitus Arises from Defects in Insulin Production or Action	929	Eukaryotic mRNAs Are Capped at the 5' End	1034		
Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	887	23.4 Obesity and the Regulation of Body Mass	930	Both Introns and Exons Are Transcribed from DNA into RNA	1035		
Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	888	Adipose Tissue Has Important Endocrine Functions	930	RNA Catalyzes the Splicing of Introns	1036		
Ribonucleotides Are the Precursors of Deoxyribonucleotides	888	Leptin Stimulates Production of Anorexigenic Peptide Hormones	932	Eukaryotic mRNAs Have a Distinctive 3' End Structure	1039		
Thymidylate Is Derived from dCDP and dUMP	890	Leptin Triggers a Signaling Cascade That Regulates Gene Expression	933	A Gene Can Give Rise to Multiple Products by Differential RNA Processing	1040		
Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively	892	The Leptin System May Have Evolved to Regulate the Starvation Response	934				
Purine and Pyrimidine Bases Are Recycled by Salvage Pathways	893						
Excess Uric Acid Causes Gout	893						
Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	894						
Box 22-1 Unusual Lifestyles of the Obscure but Abundant	895						
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine	897						
Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	897						
Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides	897						
22.2 Biosynthesis of Amino Acids	899						
α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	899						
Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate	901						
Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate	901						
Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	901						
Histidine Biosynthesis Uses Precursors of Purine Biosynthesis	903						
Amino Acid Biosynthesis Is under Allosteric Regulation	906						
22.3 Molecules Derived from Amino Acids	907						
Glycine Is a Precursor of Porphyrins	907						
Box 22-2 Medicine: On Kings and Vampires	909						
Heme Is the Source of Bile Pigments	909						
Amino Acids Are Precursors of Creatine and Glutathione	911						
D-Amino Acids Are Found Primarily in Bacteria	911						
Aromatic Amino Acids Are Precursors of Many Plant Substances	912						
Biological Amines Are Products of Amino Acid Decarboxylation	912						
Box 22-3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse	914						
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	914						
22.4 Biosynthesis and Degradation of Nucleotides	916						
De Novo Purine Nucleotide Synthesis Begins with PRPP	916						
Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	918						
Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate	920						
Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	920						
Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	922						
Ribonucleotides Are the Precursors of Deoxyribonucleotides	922						
Thymidylate Is Derived from dCDP and dUMP	923						
Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively	925						
Purine and Pyrimidine Bases Are Recycled by Salvage Pathways	926						
Excess Uric Acid Causes Gout	927						
Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	928						
Box 22-1 Unusual Lifestyles of the Obscure but Abundant	929						
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine	929						
Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	930						
Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides	930						
22.2 Biosynthesis of Amino Acids	931						
α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	931						
Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate	933						
Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate	933						
Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	935						
Histidine Biosynthesis Uses Precursors of Purine Biosynthesis	937						
Amino Acid Biosynthesis Is under Allosteric Regulation	940						
22.3 Molecules Derived from Amino Acids	941						
Glycine Is a Precursor of Porphyrins	941						
Box 22-2 Medicine: On Kings and Vampires	943						
Heme Is the Source of Bile Pigments	943						
Amino Acids Are Precursors of Creatine and Glutathione	945						
D-Amino Acids Are Found Primarily in Bacteria	945						
Aromatic Amino Acids Are Precursors of Many Plant Substances	946						
Biological Amines Are Products of Amino Acid Decarboxylation	946						
Box 22-3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse	948						
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	948						
22.4 Biosynthesis and Degradation of Nucleotides	949						
De Novo Purine Nucleotide Synthesis Begins with PRPP	949						
Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	951						
Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate	953						
Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	953						
Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	955						
Ribonucleotides Are the Precursors of Deoxyribonucleotides	955						
Thymidylate Is Derived from dCDP and dUMP	956						
Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively	958						
Purine and Pyrimidine Bases Are Recycled by Salvage Pathways	959						
Excess Uric Acid Causes Gout	960						
Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	960						
Box 22-1 Unusual Lifestyles of the Obscure but Abundant	961						
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine	961						
Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	963						
Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides	963						
22.2 Biosynthesis of Amino Acids	964						
α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	964						
Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate	966						
Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate	966						
Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	968						
Histidine Biosynthesis Uses Precursors of Purine Biosynthesis	968						
Amino Acid Biosynthesis Is under Allosteric Regulation	971						
22.3 Molecules Derived from Amino Acids	972						
Glycine Is a Precursor of Porphyrins	972						
Box 22-2 Medicine: On Kings and Vampires	973						
Heme Is the Source of Bile Pigments	973						
Amino Acids Are Precursors of Creatine and Glutathione	975						
D-Amino Acids Are Found Primarily in Bacteria	975						
Aromatic Amino Acids Are Precursors of Many Plant Substances	976						
Biological Amines Are Products of Amino Acid Decarboxylation	976						
Box 22-3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse	977						
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	977						
22.4 Biosynthesis and Degradation of Nucleotides	978						
De Novo Purine Nucleotide Synthesis Begins with PRPP	978						
Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	980						
Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate	980						
Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	980						
Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	982						
Ribonucleotides Are the Precursors of Deoxyribonucleotides	982						
Thymidylate Is Derived from dCDP and dUMP	983						
Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively	985						
Purine and Pyrimidine Bases Are Recycled by Salvage Pathways	985						
Excess Uric Acid Causes Gout	986						
Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	986						
Box 22-1 Unusual Lifestyles of the Obscure but Abundant	987						
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine	987						
Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	987						
Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides	987						
22.2 Biosynthesis of Amino Acids	988						
α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	988						
Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate	990						
Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate	990						
Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	992						
Histidine Biosynthesis Uses Precursors of Purine Biosynthesis	992						
Amino Acid Biosynthesis Is under Allosteric Regulation	995						
22.3 Molecules Derived from Amino Acids	996						
Glycine Is a Precursor of Porphyrins	996						
Box 22-2 Medicine: On Kings and Vampires	997						
Heme Is the Source of Bile Pigments	997						
Amino Acids Are Precursors of Creatine and Glutathione	999						
D-Amino Acids Are Found Primarily in Bacteria	999						
Aromatic Amino Acids Are Precursors of Many Plant Substances	1000						
Biological Amines Are Products of Amino Acid Decarboxylation	1000						
Box 22-3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse	1001						
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	1001</td						

Ribosomal RNAs and tRNAs Also Undergo Processing	1042
Special-Function RNAs Undergo Several Types of Processing	1045
RNA Enzymes Are the Catalysts of Some Events in RNA Metabolism	1045
Cellular mRNAs Are Degraded at Different Rates	1048
Polynucleotide Phosphorylase Makes Random RNA-like Polymers	1049
26.3 RNA-Dependent Synthesis of RNA and DNA	1050
Reverse Transcriptase Produces DNA from Viral RNA	1050
Some Retroviruses Cause Cancer and AIDS	1051
Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin	1052
Box 26–2 Medicine: Fighting AIDS with Inhibitors of HIV Reverse Transcriptase	1053
Telomerase Is a Specialized Reverse Transcriptase	1053
Some Viral RNAs Are Replicated by RNA-Dependent RNA Polymerase	1056
RNA Synthesis Offers Important Clues to Biochemical Evolution	1056
Box 26–3 Methods: The SELEX Method for Generating RNA Polymers with New Functions	1058
Box 26–4 An Expanding RNA Universe Filled with TUF RNAs	1060
27 Protein Metabolism	1065
27.1 The Genetic Code	1065
The Genetic Code Was Cracked Using Artificial mRNA Templates	1066
Box 27–1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code	1070
Wobble Allows Some tRNAs to Recognize More than One Codon	1070
Translational Frameshifting and RNA Editing Affect How the Code Is Read	1072
27.2 Protein Synthesis	1075
Protein Biosynthesis Takes Place in Five Stages	1075
The Ribosome Is a Complex Supramolecular Machine	1076
Box 27–2 From an RNA World to a Protein World	1078
Transfer RNAs Have Characteristic Structural Features	1079
Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs	1081
Box 27–3 Natural and Unnatural Expansion of the Genetic Code	1085
Stage 2: A Specific Amino Acid Initiates Protein Synthesis	1088
Stage 3: Peptide Bonds Are Formed in the Elongation Stage	1091
Box 27–4 Induced Variation in the Genetic Code: Nonsense Suppression	1094
Stage 4: Termination of Polypeptide Synthesis Requires a Special Signal	1094

Stage 5: Newly Synthesized Polypeptide Chains Undergo Folding and Processing	1096
Protein Synthesis Is Inhibited by Many Antibiotics and Toxins	1098
27.3 Protein Targeting and Degradation	1100
Posttranslational Modification of Many Eukaryotic Proteins Begins in the Endoplasmic Reticulum	1100
Glycosylation Plays a Key Role in Protein Targeting	1101
Signal Sequences for Nuclear Transport Are Not Cleaved	1104
Bacteria Also Use Signal Sequences for Protein Targeting	1104
Cells Import Proteins by Receptor-Mediated Endocytosis	1106
Protein Degradation Is Mediated by Specialized Systems in All Cells	1107
28 Regulation of Gene Expression	1115
28.1 Principles of Gene Regulation	1116
RNA Polymerase Binds to DNA at Promoters	1116
Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters	1117
Many Bacterial Genes Are Clustered and Regulated in Operons	1118
The <i>lac</i> Operon Is Subject to Negative Regulation	1119
Regulatory Proteins Have Discrete DNA-Binding Domains	1121
Regulatory Proteins Also Have Protein-Protein Interaction Domains	1124
28.2 Regulation of Gene Expression in Bacteria	1126
The <i>lac</i> Operon Undergoes Positive Regulation	1126
Many Genes for Amino Acid Biosynthetic Enzymes Are Regulated by Transcription Attenuation	1127
Induction of the SOS Response Requires Destruction of Repressor Proteins	1130
Synthesis of Ribosomal Proteins Is Coordinated with rRNA Synthesis	1131
The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans	1132
Some Genes Are Regulated by Genetic Recombination	1134
28.3 Regulation of Gene Expression in Eukaryotes	1136
Transcriptionally Active Chromatin Is Structurally Distinct from Inactive Chromatin	1136
Chromatin Is Remodeled by Acetylation and Nucleosomal Displacement/Repositioning	1137
Many Eukaryotic Promoters Are Positively Regulated	1138
DNA-Binding Activators and Coactivators Facilitate Assembly of the General Transcription Factors	1138
The Genes of Galactose Metabolism in Yeast Are Subject to Both Positive and Negative Regulation	1141
Transcription Activators Have a Modular Structure	1142

Eukaryotic Gene Expression Can Be Regulated by Intercellular and Intracellular Signals	1143
Regulation Can Result from Phosphorylation of Nuclear Transcription Factors	1144
Many Eukaryotic mRNAs Are Subject to Translational Repression	1144
Posttranscriptional Gene Silencing Is Mediated by RNA Interference	1145
RNA-Mediated Regulation of Gene Expression Takes Many Forms in Eukaryotes	1146
Development Is Controlled by Cascades of Regulatory Proteins	1146
Box 28–1 Of Fins, Wings, Beaks, and Things	1152

Appendix A Common Abbreviations in the Biochemical Research Literature	A-1
Appendix B Abbreviated Solutions to Problems	AS-1
Glossary	G-1
Credits	C-1
Index	I-1