

Contents

Chapter 1 *Introduction* 1

1.1 What Is Hydrogeology? 1
Physical Hydrogeology Before the Early 1940s 2
Chemical Hydrogeology Before the Early 1960s 3
Post-1960 Hydrogeology 4

1.2 The Relationship Between Hydrogeology and Other Fields of Geology 4

1.3 Hydrologic Cycle 5
Components of the Hydrologic Cycle 5
Evapotranspiration and Potential Evapotranspiration 7
Infiltration and Recharge 8
Base Flow 8
Hydrologic Equation 10

Chapter 2 *The Origin of Porosity and Permeability* 13

2.1 Porosity and Permeability 13
Porosity and Effective Porosity 13
Permeability 15

2.2 Continental Environments 16
Weathering 16
Erosion, Transportation, and Deposition 17
Fluvial Deposits 17
Eolian Deposits 20
Lacustrine Deposits 20
Glacial Deposits 20

2.3 The Boundary Between Continental and Marine Environments 20

2.4 Marine Environments 21
Lateral and Vertical Succession of Strata 21
Ancestral Seas and Their Deposits 22
The Paleozoic Rock Group 23
The Mesozoic Rock Group 24
The Cenozoic Rock Group 24
Diagenesis in Marine Environments 24
Porosity Reduction: Compaction and Pressure Solution 24

Chemical Rock-Water Interactions: Secondary Porosity in Sandstones 26

2.5 Uplift, Diagenesis, and Erosion 27
The Style of Formations Associated with Uplift 27
Secondary Porosity Enhancement in Carbonate Rocks 29

2.6 Tectonism and the Formation of Fractures 29
Style of Fracturing 30
Fluid Pressure and Porosity 31
Connectivity 31

Chapter 3 *Ground-Water Movement* 33

3.1 Darcy's Experimental Law and Field Extensions 33
The Nature of Darcy's Velocity 34
Hydraulic Head: Hubbert's Force Potential 34
The Gradient and Ground-Water Flow 36
Physical Interpretation of Darcy's Proportionality Constant 36
Units and Dimensions 37

3.2 Hydraulic Conductivity and Permeability of Geologic Materials 37
Observed Range in Hydraulic Conductivity Values 37
Character of Hydraulic Conductivity Distribution 38
Anisotropy and Heterogeneity Within Units 39
Heterogeneity Among Units and the Classification of Aquifers 41
Creating Hydraulic Conductivity Averages 42
Darcy's Law for Anisotropic Material 43
Measurement of Hydraulic Conductivity 44
Laboratory Testing 44
The Search for Empirical Correlations 44

3.3	Mapping Flow in Geological Systems	45
Hydrogeological Cross Sections 46		
Potentiometric Surface and Water-Table Maps 47		
Closing Statements 48		
3.4	Flow in Fractured Rocks	48
Continuum Approach to Fluid Flow 48		
Intergranular Porous Rocks 49		
Fractured Rocks 49		
3.5	Flow in the Unsaturated Zone	51
Hydraulic and Pressure Heads 51		
Water Retention Curves 53		
Darcy's Law for Variably Saturated Flow 54		
Unsaturated Flow in Fractured Rocks 54		

Chapter 4
Main Equations of Flow, Boundary Conditions, and Flow Nets 58

4.1	Organizing the Study of Ground-Water Flow Equations	58
4.2	Conservation of Fluid Mass	59
Main Equations of Flow 60		
4.3	The Storage Properties of Porous Media	62
Compressibility of Water and Its Relation to Specific Storage for Confined Aquifers 63		
Compressibility of the Rock Matrix: Effective Stress Concept 64		
Matrix Compressibility and Its Relation to Specific Storage of Confined Aquifers 65		
Equation for Confined Flow in an Aquifer 67		
Specific Yield of Aquifers 68		
4.4	Boundary Conditions and Flow Nets	68
Graphic Flow Net Construction 71		
4.5	Dimensional Analysis	72

Chapter 5
Ground Water in the Basin Hydrologic Cycle 75

5.1	Topographic Driving Forces	75
The Early Field Studies 75		
Conceptual, Graphical, and Mathematical Models of Unconfined Flow 76		
Effects of Basin Geometry on Ground-Water Flow 78		
Effects of Basin Geology on Ground-Water Flow 80		
Ground Water in Mountainous Terrain 83		
Ground Water in Carbonate Terrain 87		
Ground Water in Coastal Regions 88		
The Fresh Water-Salt Water Interface in Coastal Regions 89		
The Ghyben-Herzberg Relation 89		
The Shape of the Interface with a Submerged Seepage Surface 90		
Upconing of the Interface Caused by Pumping Wells 91		

5.2	Surface Features of Ground-Water Flow	91
Recharge-Discharge Relations 91		
Ground Water-Lake Interactions 93		
Ground Water-Surface Water Interactions 95		
5.3	Some Engineering and Geologic Implications of Topographic Drive Systems	97
Large Reservoir Impoundments 97		
Excavations: Inflows and Stability 98		
The Sea-Level Canal 98		
Ground-Water Inflows into Excavations 99		
The Stability of Excavations in Ground-Water Discharge Areas 99		
Landslides and Slope Stability 101		

Chapter 6
Hydraulic Testing: Models, Methods, and Applications 103

6.1	Prototype Geologic Models in Hydraulic Testing	103
6.2	Conventional Hydraulic Test Procedures and Analysis	105
The Theis Nonequilibrium Pumping Test Method 105		
The Curve-Matching Procedure 107		
Assumptions and Interpretations 107		
Modifications of the Nonequilibrium Equation 108		
Time-Drawdown Method 108		
Distance-Drawdown Method 109		
Steady-State Behavior as a Terminal Case of the Transient Case 109		
The Hantush-Jacob Leaky Aquifer Method 110		
Water Table Aquifers 112		
6.3	Single-Borehole Tests	114
Recovery in a Pumped Well 114		
The Drill Stem Test 114		
Slug Injection or Withdrawal Tests 115		
Response at the Pumped Well: Specific Capacity and Well Efficiency 116		
6.4	Partial Penetration, Superposition, and Bounded Aquifers	118
Partial Penetration 118		
Principle of Superposition 118		
Bounded Aquifers 120		
6.5	Hydraulic Testing in Fractured or Low-Permeability Rocks	122
Single-Borehole Tests 123		
Multiple-Borehole Tests 123		
6.6	Some Applications to Hydraulic Problems	124
Screen Diameter and Pumping Rates 125		
Well Yield: The Step-Drawdown Test 125		
A Problem in Dewatering 125		
A Problem in Water Supply 127		

6.7	Computer-Based Calculations	128
Code Demonstration 131		
Bounded Aquifers Revisited 131		

Chapter 7
Ground Water as a Resource 136

7.1	Development of Ground-Water Resources	136
The Response of Aquifers to Pumping 136		
Yield Analysis 137		
Case Study: The Upper Los Angeles River Area 137		
Management Strategies 139		
Artificial Recharge 139		
Conjunctive Use 141		

7.2 **Introduction to Ground-Water Flow Simulation** 142

Generalized Modeling Approach 142		
Conceptual Model 142		
Ground-Water Flow Simulation 143		
Evaluation of Model Results 144		
Model Verification 144		
A Note of Caution 144		

7.3 **Formulating a Finite-Difference Equation for Flow** 145

Description of the Finite-Difference Grid 145		
Derivation of the Finite-Difference Equation 146		

7.4 **The MODFLOW Family of Codes** 147

Solving Systems of Finite-Difference Equations 148		
Modular Program Structure 148		
Illustrative Example 148		
Operational Issues 152		
Time-Step Size 152		
Drawdowns at "Pumping" Nodes 152		
Water-Table Conditions 153		
Boundary Conditions 153		

7.5 **Case Study in the Application of MODFLOW** 154

Model Development 154		
Data Preparation and Model Calibration 156		

Chapter 8
Stress, Strain, and Pore Fluids 159

8.1	Deformable Porous Media	159
One-Dimensional Consolidation 159		
Development of the Flow Equation 159		
The Undrained Response of Water Levels to Natural Loading Events 160		
The Drained Response of Water Levels to Natural Loading Events 163		
Land Subsidence as a One-Dimensional Drained Response 163		
Mathematical Treatment of Land Subsidence 165		
Three-Dimensional Consolidation 169		
Elastic Properties in Deformational Problems 169		
Flow Equations for Deformable Media 171		

8.2	Abnormal Fluid Pressures in Active Depositional Environments	172
Origin and Distribution 172		
Mathematical Formulation of the Problem 174		

Isothermal Basin Loading and Tectonic Strain 175		
One-Dimensional Basin Loading 176		
Extensions of the One-Dimensional Loading Model 177		
Thermal Expansion of Fluids 179		
Fluid Pressures and Rock Fracture 182		
Phase Transformations 183		
Subnormal Pressure 184		
Irreversible Processes 185		

8.3 **Pore Fluids in Tectonic Processes** 185

Fluid Pressures and Thrust Faulting 185		
Seismicity Induced by Fluid Injection 186		
Seismicity Induced in the Vicinity of Reservoirs 187		
Seismicity and Pore Fluids at Midcrustal Depths 188		
The Phreatic Seismograph: Earthquakes and Dilatancy Models 188		

Chapter 9
Heat Transport in Ground-Water Flow 191

9.1	Conduction, Convection, and Equations of Heat Transport	191
Fourier's Law 192		
Convective Transport 193		
Equations of Energy Transport 194		
The Heat Conduction Equation 195		
The Conductive-Convective Equation 195		
Dimensionless Groups 196		
9.2	Forced Convection	197
Temperature Profiles and Ground-Water Velocity 197		
Heat Transport in Regional Ground-Water Flow 199		
Heat Transport in Active Depositional Environments 203		
Heat Transport in Mountainous Terrain 205		
9.3	Free Convection	207
The Onset of Free Convection 207		
Sloping Layers 208		
Geological Implications 208		
9.4	Energy Resources	209
Geothermal Energy 209		
Energy Storage in Aquifers 209		
9.5	Heat Transport and Geologic Repositories for Nuclear Waste Storage	210
The Nuclear Waste Program 210		
The Rock Types 210		
Thermohydrochemical Effects 212		
Thermomechanical Effects 213		

Chapter 10
Solute Transport 215

- 10.1 Advection 215
- 10.2 Basic Concepts of Dispersion 216
 - Diffusion 218
 - Mechanical Dispersion 219
- 10.3 Character of the Dispersion Coefficient 220
 - Studies at the Microscopic Scale 220
 - Dispersivity as a Medium Property 221
 - Studies at Macroscopic and Larger Scales 221
- 10.4 A Fickian Model of Dispersion 223
- 10.5 Mixing in Fractured Media 226
- 10.6 A Geostatistical Model of Dispersion 228
 - Mean and Variance 228
 - Autocovariance and Autocorrelation Functions 229
 - Generation of Correlated Random Fields 230
 - Estimation of Dispersivity 230
- 10.7 Tracers and Tracer Tests 231
 - Field Tracer Experiments 232
 - Natural Gradient Test 232
 - Single Well Pulse Test 232
 - Two-Well Tracer Test 233
 - Single Well Injection or Withdrawal with Multiple Observation Wells 233
 - Estimates from Contaminant Plumes and Environmental Tracers 233
 - Massively Instrumented Field Tracer Tests 233
 - Borden Tracer Experiment 234
 - Validation of the Stochastic Model of Dispersion 235

Chapter 11
Principles of Aqueous Geochemistry 238

- 11.1 Introduction to Aqueous Systems 238
 - Concentration Scales 239
 - Gas and Solid Phases 240
- 11.2 Structure of Water and the Occurrence of Mass in Water 240
- 11.3 Equilibrium Versus Kinetic Descriptions of Reactions 240
 - Reaction Rates 241
- 11.4 Equilibrium Models of Reaction 241
 - Activity Models 242
- 11.5 Deviations from Equilibrium 243
- 11.6 Kinetic Reactions 244
- 11.7 Organic Compounds 245
- 11.8 Ground-Water Composition 248
 - The Routine Water Analysis 248
 - Specialized Analyses 249
- 11.9 Describing Chemical Data 250
 - Abundance or Relative Abundance 252
 - Abundance and Patterns of Change 253

Chapter 12
Chemical Reactions 255

- 12.1 Acid-Base Reactions 255
 - Natural Weak Acid-Base Systems 256
 - CO₂-Water System 256
 - Alkalinity 257
- 12.2 Solution, Exsolution, Volatilization, and Precipitation 258
 - Gas Solution and Exsolution 258
 - Solution of Organic Solutes in Water 258
 - Volatilization 259
 - Dissolution and Precipitation of Solids 262
 - Solid Solubility 262
- 12.3 Complexation Reactions 263
 - Stability of Complexes and Speciation Modeling 263
 - Major Ion Complexation and Equilibrium Calculations 264
 - Enhancing the Mobility of Metals 265
 - Organic Complexation 265
- 12.4 Reactions on Surfaces 266
 - Sorption Isotherms 266
 - Hydrophobic Sorption of Organic Compounds 267
 - K_d-based Approaches for Modeling the Sorption of Metals 269
 - Multiparameter Equilibrium Models 269
- 12.5 Oxidation-Reduction Reactions 272
 - Oxidation Numbers, Half-Reactions, Electron Activity, and Redox Potential 272
 - Kinetics and Dominant Couples 275
 - Control on the Mobility of Metals 276
 - Biotransformation of Organic Compounds 276
- 12.6 Hydrolysis 277
- 12.7 Isotopic Processes 277
 - Radioactive Decay 277
 - Isotopic Reactions 278
 - Deuterium and Oxygen-18 279

Chapter 13
Colloids and Microorganisms 282

- 13.1 A Conceptual Model of Colloidal Transport 282
 - Occurrence of Colloidal Material 283
 - Stabilization 283
 - Transport and Filtration 284
- 13.2 Colloidal Transport in Ground Water 284
 - Sampling and Measuring 284
 - Studies at Cape Cod 285
- 13.3 Microbiological Systems 285
 - Biofilms 287
 - Sampling and Enumerating Microbial Populations 287
 - Plate Counts 288

- Direct Counting Procedures 288
- Biochemical Techniques 288
- Rates of Microbial Reactions 288
- Microbial Ecology of the Subsurface 290
- 13.4 Microbial Processes 291
 - Issues in Biodegradation 292
 - Biofilm Kinetics 292
- 13.5 Biotransformation of Common Contaminants 293
 - Hydrocarbons and Derivatives 293
 - Halogenated Aliphatic Compounds 294
 - Halogenated Aromatic Compounds 294
 - Polychlorinated Biphenyls (PCBs) 295
 - Complex Transformation Pathways 295

Chapter 14
The Equations of Mass Transport 296

- 14.1 Mass Transport Equations 296
 - The Diffusion Equation 296
 - The Advection-Diffusion Equation 297
 - The Advection-Dispersion Equation 297
- 14.2 Mass Transport with Reaction 298
 - First-Order Kinetic Reactions 298
 - Equilibrium Sorption Reactions 299
 - Heterogeneous Kinetic Reactions 299
- 14.3 Boundary and Initial Conditions 300

Chapter 15
Mass Transport in Natural Ground-Water Systems 303

- 15.1 Mixing as an Agent for Chemical Change 303
 - The Mixing of Meteoric and Original Formation Waters 303
 - Diffusion in Deep Sedimentary Environments 305
- 15.2 Chemical Reactions in the Unsaturated Zone 306
 - Gas Dissolution and Redistribution 306
 - Weak Acid-Strong Base Reactions 307
 - Sulfide Oxidation 309
 - Gypsum Precipitation and Dissolution 309
 - Cation Exchange 309
 - Organic Reactions 309
- 15.3 Chemical Reactions in the Saturated Zone 310
 - Weak Acid-Strong Base Reactions 310
 - Dissolution of Soluble Salts 312
 - Redox Reactions 312
 - Cation Exchange 315
- 15.4 Case Study of the Milk River Aquifer 316
- 15.5 Age Dating of Ground Water 319
 - Direct Methods 319
 - Tritium 319

- Carbon-14 320
- Chlorine-36 322
- Indirect Methods 322
- $\delta^{18}\text{O}$ and δD 322
- Chlorofluorocarbons 322

Chapter 16
Mass Transport in Ground-Water Flow: Geologic Systems 326

- 16.1 Mass Transport in Carbonate Rocks 326
 - The Approach Toward Chemical Equilibrium in Carbonate Sediments 327
 - The Problem of Undersaturation 329
 - Dolomitization 330
- 16.2 Economic Mineralization 330
 - Origin of Ore Deposits 331
 - Roll-Front Uranium Deposits 331
 - Mississippi Valley-Type Lead-Zinc Deposits 332
 - Noncommercial Mineralization: Saline Soils and Evaporites 337
- 16.3 Migration and Entrapment of Hydrocarbons 337
 - Displacement and Entrapment 337
 - Basin Migration Models 339
- 16.4 Self-Organization in Hydrogeologic Systems 341
 - Patterning Associated with Dissolution 341
 - Patterning Associated with Precipitation and Mixed Phenomena 341

Chapter 17
Introduction to Contaminant Hydrogeology 344

- 17.1 Sources of Ground-Water Contamination 344
 - Radioactive Contaminants 346
 - Trace Metals 347
 - Nutrients 349
 - Other Inorganic Species 349
 - Organic Contaminants 349
 - Petroleum Hydrocarbons and Derivatives 349
 - Halogenated Aliphatic Compounds 350
 - Halogenated Aromatic Compounds 350
 - Polychlorinated Biphenyls 350
 - Health Effects 350
 - Biological Contaminants 350
- 17.2 Solute Plumes as a Manifestation of Processes 352
 - Fractured and Karst Systems 357
 - Babylon, New York, Case Study 357
 - Alkali Lake, Oregon, Case Study 359
- 17.3 Design and Quality Assurance Issues in Solute Sampling 360
 - Design of Sampling Networks 360
 - Assuring the Quality of Chemical Data 362

17.4	Sampling Methods	362
Conventional Wells or Piezometers	362	
Multilevel Samplers	363	
Solid and Fluid Sampling	364	
Cone Penetrometry	365	
Other Sampling Methods	367	
Dissolved Contaminants in the Unsaturated Zone	367	

17.5	Indirect Methods for Detecting Contamination	367
Soil-Gas Characterization	367	
Geophysical Methods	368	
Electrical Methods	369	
Ground-Penetrating Radar	370	
Magnetometry	371	
Seismic Methods	371	

Chapter 18
Modeling the Transport of Dissolved Contaminants **372**

18.1	Analytical Approaches	372
Advection and Longitudinal Dispersion	372	
The Retardation Equation	375	
Radioactive Decay, Biodegradation, and Hydrolysis	376	
Transverse Dispersion	377	
Models for Multidimensional Transport	378	
Continuous Sources	378	
Numerical Integration of an Analytical Solution	380	
The Instantaneous Point Source Model	380	

18.2	Programming the Analytical Solutions for Computers	382
-------------	---	------------

18.3	Numerical Approaches	384
A Generalized Modeling Approach	384	
The Common Solution Techniques	385	
Adding Chemical Reactions	386	

18.4	Case Study in the Application of a Numerical Model	386
-------------	---	------------

Chapter 19
Multiphase Fluid Systems **393**

19.1	Basic Concepts	393
Saturation and Wettability	393	
Interfacial Tension and Capillary Forces	394	
Imbibition and Drainage	394	
Relative Permeability	395	
Solubility and Effective Solubility	397	
19.2	LNAPLs and DNAPLs	398
Conceptual Models for the Occurrence of LNAPLs	399	
Occurrence of DNAPLs in Ground Water	401	
Secondary Contamination Due to NAPLs	401	
Conceptual Models and Quantitative Methods	403	

19.3	A Case Study of Gasoline Leakage	404
	Hyde Park Landfill Case Study	404

19.4	Partitioning	405
-------------	---------------------	------------

19.4	Fate of Organics in the Unsaturated Zone	406
-------------	---	------------

Volatilization	406	
Gas Transport by Diffusion	408	
Equilibrium Calculations of Mass Distributions	409	
Mass of VOC in Gas Phase	411	
Mass of VOC in Aqueous Phase	411	
Mass of VOC in Sorbed Phase	411	
Mass of VOC in NAPL Phase	411	

19.5	Fate of Organics in the Saturated Zone	411
-------------	---	------------

Equilibrium Calculations of Mass Distribution	412	
---	-----	--

19.6	Air-Permeability Testing	412
-------------	---------------------------------	------------

19.7	Recognizing DNAPL Sites	413
Systematic Screening Procedure	414	

Chapter 20
Remediation: Overview and Removal Options **417**

20.1	Containment	417
-------------	--------------------	------------

Slurry Walls	417	
Sheet Pile Walls	418	
Grouting	418	
Surface Seals and Surface Drainage	418	
Hydrodynamic Controls	419	
Stabilization and Solidification	420	

20.2	Management Options	420
-------------	---------------------------	------------

20.3	Overview of Methods for Contaminant Removal	420
-------------	--	------------

Excavation and Ex Situ Treatment	421	
Pump and Treat	421	
Interceptor Systems	421	
Soil-Vapor Extraction	421	

20.4	Pump and Treat	422
-------------	-----------------------	------------

The Problem of Pump and Treat	422	
Technical Considerations with Injection-Recovery Systems	423	
Methods for Designing Pump-and-Treat Systems	425	

Expanding Pilot-Scale Systems	425	
Capture Zones	426	
Analytical Approaches to Defining Capture Zones	426	

Model-Based Approaches for the Design of Recovery Systems	429	
Simulation-Optimization Techniques	429	
Issues in the Design of Capture Zones	430	

20.5	Interceptor Systems for NAPL Recovery	430
-------------	--	------------

20.6	Soil-Vapor Extraction	431
Components of an SVE System	432	

When Can SVE Systems Be Used?	433
--------------------------------------	------------

Estimating Removal Rates	434
Removal Rate Calculations	435

Field Estimates of Soil Permeability	435
Heterogeneity and the Efficiency of SVE Systems	436

20.7	Air Sparging	437
-------------	---------------------	------------

Airflow and Channeling	437
Designing Air-Sparging Systems	438

20.8	Case Studies in Site Remediation	438
-------------	---	------------

Oil Spill: Calgary, Alberta	438
Gilson Road: Nashua, New Hampshire	439
Hyde Park Landfill: Niagara Falls, New York	440
Groveland Wells Site, Massachusetts	441

Chapter 21

***In Situ* Destruction and Risk Assessment** **443**

21.1	Intrinsic Bioremediation	443
-------------	---------------------------------	------------

21.2	Bioventing and Bioslurping	445
-------------	-----------------------------------	------------

Applicability of the Technology to Contaminant Groups	446
Requirements for Success with Bioventing Systems	446
In Situ Respiration Testing	447
Progress in Solvent Bioremediation	448

21.3	Abiotic Chemical Destruction	449
-------------	-------------------------------------	------------

Reactive Barrier Systems	450
Funnel-and-Gate Systems	450

21.4	Risk Assessment	450
-------------	------------------------	------------

Data Collection and Data Evaluation	451
Exposure Assessment	451
Toxicity Assessment	453
Health-Risk Assessment	454
Types of Risk Assessments	455
Environmental Risk Assessment	456

21.5	Fernald Case Study	456
-------------	---------------------------	------------

Detailed Risk Assessment	457
--------------------------	-----

Answers to Problems **461**

Appendix A

Derivation of the Flow Equation in a Deforming Medium **463**

Appendix B

About the Computer Disk **464**

Appendix C

Table of Atomic Weights **466**

References **468**

Index **494**