

# Contents

## *List of Contributors*

## *Preface*

xiii

xv

## **1 Biosynthesis and Metabolism of Starch and Sugars**

*Frederik Börnke and Sophia Sonnewald*

|       |                                                                                      |    |
|-------|--------------------------------------------------------------------------------------|----|
| 1.1   | Introduction                                                                         | 1  |
| 1.2   | Carbon Partitioning in Mesophyll Cells                                               | 2  |
| 1.3   | Sucrose Biosynthesis in Source Leaves                                                | 3  |
| 1.3.1 | Regulatory Enzymes of the Pathway                                                    | 4  |
| 1.4   | Starch Metabolism in Source Leaves                                                   | 7  |
| 1.4.1 | Starch Synthesis within the Chloroplast                                              | 7  |
| 1.4.2 | Starch Breakdown in Leaves and Metabolism of its Degradation Products in the Cytosol | 9  |
| 1.5   | Sucrose to Starch Conversion in Storage Organs                                       | 12 |
| 1.6   | Metabolic Engineering of Carbohydrate Metabolism                                     | 14 |
| 1.6.1 | Increasing Starch Content                                                            | 14 |
| 1.6.2 | Altering Starch Quality                                                              | 15 |
| 1.7   | Engineering Soluble Sugars                                                           | 16 |
| 1.8   | Production of Novel Carbohydrates in Transgenic Plants                               | 17 |
| 1.9   | Network Analysis of Carbohydrate Metabolism                                          | 18 |
|       | Acknowledgements                                                                     | 19 |
|       | References                                                                           | 19 |

## **2 Lipid Biosynthesis**

*David Hildebrand*

|       |                          |    |
|-------|--------------------------|----|
| 2.1   | Introduction             | 27 |
| 2.2   | Fatty Acid Synthesis     | 29 |
| 2.3   | Fatty Acid Desaturases   | 32 |
| 2.3.1 | $\Delta$ -9 Desaturases  | 32 |
| 2.3.2 | $\Delta$ -12 Desaturases | 35 |
| 2.3.3 | $\omega$ -3 Desaturases  | 37 |
| 2.4   | Lipid Signals            | 38 |
| 2.5   | Algae                    | 38 |
| 2.6   | Membrane Synthesis       | 39 |
| 2.7   | TAG Biosynthesis         | 43 |

|                                                                                |            |                                                                       |            |
|--------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------|------------|
| 2.8 Genetic Engineering of Oilseed for Industrial Uses                         | 46         | 4.4.1 <i>O</i> -Acetylserine(thiol)lyase                              | 114        |
| 2.9 Plant Oils as a Renewable Resource                                         | 48         | 4.4.2 Serine Acetyltransferase                                        | 115        |
| Acknowledgements                                                               | 51         | 4.4.3 Cysteine Synthase Complex                                       | 116        |
| References                                                                     | 52         | 4.5 Methionine Biosynthesis                                           | 117        |
| <b>3 Symbiotic Nitrogen Fixation</b>                                           | <b>67</b>  | 4.5.1 Biosynthetic Pathways                                           | 117        |
| <i>Hiroshi Kouchi</i>                                                          |            | 4.5.2 Regulation of Methionine Biosynthesis                           | 118        |
| 3.1 Nitrogen Fixing Organisms and the Nitrogenase System                       | 67         | 4.6 Regulators for Coordination of Sulfur Metabolism                  | 118        |
| 3.1.1 Nitrogen Fixing Microorganisms                                           | 67         | 4.6.1 Transcriptional Regulators                                      | 118        |
| 3.1.2 The Nitrogenase Complex                                                  | 68         | 4.6.2 MicroRNA-395                                                    | 119        |
| 3.1.3 <i>Nif</i> Genes and Regulation                                          | 69         | 4.6.3 OAS-Mediated Regulation                                         | 120        |
| 3.2 Symbiotic Nodule Formation in Legume Plants                                | 70         | 4.6.4 Outlook for Application                                         | 120        |
| 3.2.1 Infection and the Nodulation Process                                     | 70         | References                                                            | 121        |
| 3.2.2 Nod Factors, Early Symbiotic Signalling and the Rhizobial                |            |                                                                       |            |
| Infection Process                                                              | 72         |                                                                       |            |
| 3.3 Mutual Interactions between Host Cells and Bacteroids in Legume            |            | <b>5 Nucleotide Metabolism</b>                                        | <b>135</b> |
| Nodules                                                                        | 76         | <i>Rita Zrenner and Hiroshi Ashihara</i>                              |            |
| 3.3.1 Differentiation of Rhizobia into Bacteroids                              | 76         | 5.1 Introduction                                                      | 135        |
| 3.3.2 Protection of the Nitrogenase System from Oxygen in Root Nodules         | 78         | 5.2 Pyrimidine Metabolism                                             | 136        |
| 3.3.3 Metabolite Exchange between the Plant Cell Cytosol and Bacteroids        | 79         | 5.2.1 <i>De Novo</i> Biosynthetic Pathway                             | 136        |
| 3.4 Molecular Genetic Approaches to the Host Regulation of Nitrogen            |            | 5.2.2 Biosynthesis of Thymidine Nucleotides                           | 138        |
| Fixation                                                                       | 83         | 5.2.3 Salvage Pathways                                                | 139        |
| 3.4.1 The Fix <sup>-</sup> Mutants: Host Legume-Determined Ineffective Nodules | 83         | 5.2.4 Catabolism                                                      | 140        |
| 3.4.2 Metabolic Partnerships Unveiled by Fix <sup>-</sup> Mutants              | 87         | 5.2.5 Secondary Metabolites                                           | 142        |
| 3.4.3 Premature Senescence in Fix <sup>-</sup> Nodules and Symbosome           |            | 5.3 Purine Metabolism                                                 | 142        |
| Organisation                                                                   | 90         | 5.3.1 <i>De Novo</i> Biosynthetic Pathway                             | 142        |
| Acknowledgements                                                               | 92         | 5.3.2 Salvage Pathways                                                | 145        |
| References                                                                     | 92         | 5.3.3 Catabolism                                                      | 146        |
| <b>4 Sulfur Metabolism</b>                                                     | <b>103</b> | 5.3.4 Secondary Metabolites                                           | 148        |
| <i>Hideki Takahashi</i>                                                        |            | 5.4 Pyridine Metabolism                                               | 149        |
| 4.1 Introduction                                                               | 103        | 5.4.1 <i>De Novo</i> Biosynthetic Pathway                             | 149        |
| 4.2 Sulfate Transport                                                          | 104        | 5.4.2 Pyridine Nucleotide Cycle                                       | 149        |
| 4.2.1 Sulfate Transport Mechanisms                                             | 104        | 5.4.3 Secondary Metabolites                                           | 152        |
| 4.2.2 Sulfate Uptake System                                                    | 106        | 5.5 Biotechnological Approaches                                       | 152        |
| 4.2.3 Transport of Sulfate from Roots to Shoots                                | 107        | 5.5.1 New Herbicide Targets                                           | 153        |
| 4.2.4 Subcellular Transport of Sulfate                                         | 109        | 5.5.2 Increased Growth by Increased Nucleotide Precursor Availability | 154        |
| 4.2.5 Redistribution of Sulfur                                                 | 109        | 5.5.3 Increased Potato Tuber Yield by Modulating Adenylate Pools      | 155        |
| 4.2.6 Regulation of Sulfate Uptake                                             | 110        | References                                                            | 156        |
| 4.3 Sulfate Reduction                                                          | 111        |                                                                       |            |
| 4.3.1 ATP Sulfurylase                                                          | 111        | <b>6 Purine Alkaloid Metabolism</b>                                   | <b>163</b> |
| 4.3.2 APS Reductase                                                            | 112        | <i>Hiroshi Ashihara, Shinjiro Ogita and Alan Crozier</i>              |            |
| 4.3.3 APS Kinase                                                               | 112        | 6.1 Introduction                                                      | 163        |
| 4.3.4 Sulfite Reductase                                                        | 113        | 6.2 Classification of Purine Alkaloids                                | 166        |
| 4.3.5 Regulation of Sulfate Reduction                                          | 113        | 6.3 Occurrence of Purine Alkaloids                                    | 166        |
| 4.4 Cysteine Biosynthesis                                                      | 114        | 6.4 Biosynthesis of Caffeine                                          | 167        |
|                                                                                |            | 6.4.1 Biosynthetic Pathway from Purine Nucleotides                    | 167        |
|                                                                                |            | 6.4.2 Caffeine Biosynthesis from Xanthosine                           | 168        |
|                                                                                |            | 6.4.3 Cellular Localisation of Caffeine Biosynthesis                  | 170        |

|                                                                                  |            |                                                                                               |            |
|----------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------|------------|
| 6.5 Catabolism of Caffeine                                                       | 171        | 8.5.1 Mevalonate (MVA) Pathway                                                                | 225        |
| 6.6 Physiological and Ecological Aspects of Purine Alkaloid Metabolism in Plants | 173        | 8.5.2 Methyl Erythritol Phosphate (MEP) Pathway                                               | 227        |
| 6.6.1 Tissue Age and Caffeine Metabolism                                         | 173        | 8.6 Subcellular and Cellular Compartmentalisations of Terpenoid Metabolism                    | 228        |
| 6.6.2 Stress Response of Caffeine Biosynthesis                                   | 173        | 8.6.1 Subcellular Localisation and Metabolic Cross-Talk between MVA and MEP Pathways          | 228        |
| 6.6.3 Ecological Role of Purine Alkaloids                                        | 176        | 8.6.2 Cellular Compartmentalisation of Terpenoid Metabolism                                   | 229        |
| 6.7 Metabolic Engineering of Caffeine <i>In Planta</i>                           | 176        | 8.7 Gene Clusters in Terpenoid Metabolism                                                     | 230        |
| 6.7.1 Tissue Culture Technologies of Coffee Plants                               | 177        | 8.8 Metabolic Engineering of Terpenoid Metabolism                                             | 231        |
| 6.7.2 Suppression of Caffeine Biosynthesis in Coffee Plants                      | 177        | 8.8.1 Microbial Metabolic Engineering                                                         | 232        |
| 6.7.3 Production of Caffeine in Tobacco Plants                                   | 180        | 8.8.2 Plant Metabolic Engineering                                                             | 233        |
| 6.7.4 Construction of Transgenic Caffeine-Producing Tobacco Plants               | 180        | 8.9 Concluding Remarks                                                                        | 235        |
| 6.7.5 Repelling Effects on Tobacco Cutworms                                      | 181        | References                                                                                    | 235        |
| 6.7.6 Perspectives                                                               | 183        |                                                                                               |            |
| References                                                                       | 184        |                                                                                               |            |
| <b>7 Nicotine Biosynthesis</b>                                                   | <b>191</b> | <b>9 Benzylisoquinoline Alkaloid Biosynthesis</b>                                             | <b>241</b> |
| <i>Tsubasa Shoji and Takashi Hashimoto</i>                                       |            | <i>Isabel Desgagné-Penix and Peter J Facchini</i>                                             |            |
| 7.1 Introduction                                                                 | 191        | 9.1 Introduction                                                                              | 241        |
| 7.2 Pathways and Enzymes                                                         | 192        | 9.2 Biosynthesis                                                                              | 242        |
| 7.2.1 Pyrrolidine Formation                                                      | 193        | 9.2.1 (S)-Norcoclaurine                                                                       | 242        |
| 7.2.2 Pyridine Formation                                                         | 195        | 9.2.2 (S)-Reticuline                                                                          | 244        |
| 7.2.3 Coupling of the Pyrrolidine and Pyridine Rings                             | 197        | 9.2.3 Morphinan Alkaloids                                                                     | 245        |
| 7.2.4 Nornicotine Formation                                                      | 198        | 9.2.4 Sanguinarine                                                                            | 245        |
| 7.2.5 Anabasine and Anatabine Formation                                          | 199        | 9.2.5 Aporphine and Protoberberine Alkaloids                                                  | 247        |
| 7.3 Compartmentation and Trafficking                                             | 200        | 9.2.6 Bisbenzylisoquinoline Alkaloids and Laudanine                                           | 249        |
| 7.3.1 Long-Distance Transport from Roots to Leaves                               | 200        | 9.3 Localisation and Transport of Benzylisoquinoline Alkaloids and their Biosynthetic Enzymes | 249        |
| 7.3.2 Cell-Specific Nicotine Biosynthesis in Roots                               | 202        | 9.3.1 Cellular and Subcellular Localisation                                                   | 249        |
| 7.3.3 Nicotine Transporters Involved in Vacuolar Sequestration                   | 202        | 9.3.2 Transport                                                                               | 251        |
| 7.4 Gene Regulation                                                              | 203        | 9.4 Regulation                                                                                | 251        |
| 7.4.1 Jasmonate                                                                  | 203        | 9.4.1 Gene Regulation                                                                         | 251        |
| 7.4.2 Ethylene                                                                   | 206        | 9.4.2 Signal Transduction                                                                     | 251        |
| 7.4.3 Auxin                                                                      | 206        | 9.5 Application to Biotechnology                                                              | 252        |
| 7.4.4 NIC Regulatory Genes                                                       | 206        | 9.5.1 Mutagenesis                                                                             | 252        |
| 7.5 Metabolic Engineering                                                        | 207        | 9.5.2 Genetic Transformation and Metabolic Engineering                                        | 252        |
| 7.6 Recent Developments                                                          | 208        | 9.5.3 Metabolic Engineering                                                                   | 254        |
| 7.7 Summary                                                                      | 208        | 9.6 Conclusions                                                                               | 254        |
| References                                                                       | 208        | References                                                                                    | 254        |
| <b>8 Terpenoid Biosynthesis</b>                                                  | <b>217</b> | <b>10 Monoterpene Indole Alkaloid Biosynthesis</b>                                            | <b>263</b> |
| <i>Dae-Kyun Ro</i>                                                               |            | <i>Vincenzo De Luca</i>                                                                       |            |
| 8.1 Introduction                                                                 | 217        | 10.1 Introduction                                                                             | 263        |
| 8.2 Terpenoid Diversity                                                          | 218        | 10.2 Monoterpene Indole Alkaloid (MIA) Biosynthesis                                           | 265        |
| 8.3 Mechanistic Aspects of Terpenoid Biogenesis                                  | 222        | 10.2.1 Contributions of Two Separate Pathways in MIA Assembly                                 | 265        |
| 8.4 Terpene Synthase – Structure, Evolution and Engineering                      | 223        | 10.2.2 Genes for the Biosynthesis of Secologanin                                              | 266        |
| 8.5 Two Distinct Pathways for Isopentenyl Diphosphate (IPP) Biosynthesis         | 225        | 10.2.3 MIA Biosynthesis in <i>Catharanthus Roseus</i>                                         | 266        |

|        |                                                                                                                                     |     |        |                                                                                           |     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------------------------------------------------------------------------------------------|-----|
| 10.2.4 | MIA Biosynthesis in <i>Rauvolfia Serpentina</i>                                                                                     | 269 | 12     | <b>Pigment Biosynthesis I. Anthocyanins</b>                                               | 321 |
| 10.2.5 | MIA Biosynthesis in <i>Camptotheca Acuminata</i> and<br><i>Ophiorrhiza Pumila</i>                                                   | 269 |        | <i>Yoshihiro Ozeki, Yuki Matsuba, Yutaka Abe, Naoyuki Umemoto and<br/>Nobuhiro Sasaki</i> |     |
| 10.3   | MIA Pathway Gene Discovery will be Enhanced by Large-Scale<br>Sequencing and Comparative Analyses                                   | 271 | 12.1   | Introduction                                                                              | 321 |
| 10.3.1 | Pyrosequencing                                                                                                                      | 271 | 12.2   | The Anthocyanin Biosynthetic Pathway                                                      | 322 |
| 10.3.2 | Sequencing by Expressed Sequence Tag Approaches                                                                                     | 271 | 12.3   | Glycosylation of Anthocyanidins                                                           | 325 |
| 10.4   | Developmental and Environmental Regulation of MIA Biosynthesis                                                                      | 272 | 12.4   | Acylation of Anthocyanin Glycosides                                                       | 327 |
| 10.4.1 | Why is the Biosynthesis of MIAs in <i>Catharanthus</i><br>Compartmented in Different Cell Types and Within<br>Different Organelles? | 273 | 12.5   | Transport of Anthocyanins from Cytosol to Vacuoles                                        | 331 |
| 10.4.2 | Why does MIA Biosynthesis Occur in at Least Five<br>Subcellular Compartments?                                                       | 273 | 12.6   | Concluding Remarks                                                                        | 335 |
| 10.4.3 | Why is the MEP Pathway and Geraniol-10-Hydroxylase<br>Expressed in Internal Phloem-Associated Parenchyma Cells?                     | 276 |        | References                                                                                | 336 |
| 10.4.4 | Why is MIA Biosynthesis Regulated and Organised<br>Differently in above- and below-Ground Organs in<br><i>Catharanthus Roseus</i> ? | 277 | 13     | <b>Pigment Biosynthesis II: Betacyanins and Carotenoids</b>                               | 343 |
| 10.4.5 | How is MIA Biosynthesis Regulated?                                                                                                  | 278 |        | <i>Masaaki Sakuta and Akemi Ohmiya</i>                                                    |     |
| 10.4.6 | Why has Plant Cell Culture Failed as a Commercial<br>Production System?                                                             | 280 | 13.1   | Betacyanins                                                                               | 343 |
| 10.5   | Metabolic Engineering using Enzymes with Altered Substrate<br>Specificity                                                           | 282 | 13.1.1 | Biosynthesis                                                                              | 344 |
| 10.6   | Conclusion                                                                                                                          | 282 | 13.1.2 | Factors Controlling Betacyanin Biosynthesis                                               | 347 |
|        | Acknowledgements                                                                                                                    | 283 | 13.1.3 | Molecular Mechanism of the Mutual Exclusion of<br>Anthocyanins and Betacyanins            | 347 |
|        | References                                                                                                                          | 283 | 13.1.4 | Betacyanins as Food Colourants                                                            | 348 |
| 11     | <b>Flavonoid Biosynthesis</b>                                                                                                       | 293 | 13.2   | Carotenoids                                                                               | 350 |
|        | <i>Indu B. Jaganath and Alan Crozier</i>                                                                                            |     | 13.2.1 | Carotenoid Diversity                                                                      | 350 |
| 11.1   | Introduction                                                                                                                        | 293 | 13.2.2 | Carotenoid Biosynthesis                                                                   | 352 |
| 11.2   | Advances in Molecular Approaches for Flavonoid Biosynthetic<br>Pathway Elucidation                                                  | 294 | 13.2.3 | Carotenoid Degradation                                                                    | 354 |
| 11.2.1 | Genetic and Transgenic Approaches                                                                                                   | 295 | 13.2.4 | Regulation of Carotenoid Biosynthesis                                                     | 355 |
| 11.2.2 | Metabolomics                                                                                                                        | 297 | 13.2.5 | Regulation of Carotenoid Accumulation Other<br>than via Biosynthesis                      | 357 |
| 11.2.3 | Systems Biology Approach                                                                                                            | 297 | 13.3   | Metabolic Engineering of Carotenoids                                                      | 357 |
| 11.3   | The Flavonoid Biosynthetic Pathway as it is Today                                                                                   | 299 | 13.3.1 | Genetic Manipulation for Elevated $\beta$ -Carotene                                       | 357 |
| 11.3.1 | Gateway into the Flavonoid Pathway                                                                                                  | 299 | 13.3.2 | Genetic Manipulation for Ketocarotenoid Production                                        | 359 |
| 11.3.2 | Isoflavonoid Branch Pathway                                                                                                         | 301 |        | References                                                                                | 361 |
| 11.3.3 | Flavanone Branch Pathway                                                                                                            | 302 | 14     | <b>Metabolomics in Plant Biotechnology</b>                                                | 373 |
| 11.3.4 | Flavone Branch Pathway                                                                                                              | 305 |        | <i>Yozo Okazaki, Akira Oikawa, Miyako Kusano, Fumio Matsuda and<br/>Kazuki Saito</i>      |     |
| 11.3.5 | Flavonol Branch Pathway                                                                                                             | 305 | 14.1   | Introduction                                                                              | 373 |
| 11.3.6 | Proanthocyanidin Branch Pathway                                                                                                     | 308 | 14.2   | Analytical Technologies                                                                   | 373 |
| 11.3.7 | Anthocyanidin Branch Pathway                                                                                                        | 308 | 14.2.1 | Gas Chromatography-Mass Spectrometry                                                      | 373 |
| 11.4   | Conclusions                                                                                                                         | 311 | 14.2.2 | Liquid Chromatography-Mass Spectrometry                                                   | 374 |
|        | References                                                                                                                          | 313 | 14.2.3 | Capillary Electrophoresis-Mass Spectrometry                                               | 375 |
|        |                                                                                                                                     |     | 14.2.4 | Fourier Transform Ion Cyclotron Resonance Mass<br>Spectrometry (FT-ICR MS)                | 375 |
|        |                                                                                                                                     |     | 14.2.5 | Nuclear Magnetic Resonance Spectroscopy                                                   | 376 |
|        |                                                                                                                                     |     | 14.3   | Informatics Techniques                                                                    | 376 |
|        |                                                                                                                                     |     | 14.4   | Biotechnological Application                                                              | 378 |

|                                                                     |            |
|---------------------------------------------------------------------|------------|
| 14.4.1 Application for Functional Genomics                          | 378        |
| 14.4.2 Application for Metabolome QTL Analysis                      | 378        |
| 14.4.3 Application for Evaluation of Genetically Modified Organisms | 379        |
| 14.4.4 Application for Identification of Biomarkers                 | 380        |
| Acknowledgements                                                    | 381        |
| References                                                          | 381        |
| <b>Index</b>                                                        | <b>389</b> |

## List of Contributors

**Yutaka Abe**, Division of Food Additives, The National Institute of Health Sciences, Setagaya-ku, Tokyo, 158-8501 Japan.

**Hiroshi Ashihara**, Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan.

**Frederik Börnke**, Department Biologie, Lehrstuhl für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058 Erlangen, Germany.

**Alan Crozier**, Plant Products and Human Nutrition Group, Graham Kerr Building, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.

**Vincenzo De Luca**, Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1.

**Isabel Desgagné-Penix**, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada, T2N 1N4.

**Peter J. Facchini**, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada, T2N 1N4.

**Takashi Hashimoto**, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0101 Japan.

**David Hildebrand**, 403 Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA.

**Indu B. Jaganath**, Biotechnology Research Centre, Malaysian Agricultural Research Institute, 43400 Serdang Selangor, Malaysia.

**Atsushi Komamine**, The Research Institute of Evolutionary Biology, Setagaya-ku, Tokyo, 158-0098 Japan

**Hiroshi Kouchi**, Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, 305-8602 Japan.