

Contents

Chapter 1	Introduction and Historical Perspective	
1.1.	Historical Overview.....	1
1.2.	Scope of the Monograph	8
	References	9
Chapter 2	Similarities and Differences between Supercapacitors and Batteries for Storing Electrical Energy	
2.1.	Introduction	11
2.1.1.	Energy Storage Systems.....	11
2.1.2.	Modes of Electrical Energy Storage by Capacitors and Batteries.....	12
2.2.	Faradaic and Non-Faradaic Processes.....	13
2.2.1.	Non-Faradaic	14
2.2.2.	Faradaic	14
2.3.	Types of Capacitors and Types of Batteries	15
2.3.1.	Distinguishable Systems.....	15
2.3.2.	Cell Design and Equivalent Circuits	17
2.4.	Differences of Densities of Charge Storage in Capacitors and Batteries	18
2.4.1.	Electron Densities per Atom or Molecule ..	18
2.4.2.	Comparison of Energy Densities Attainable in Electrochemical Capacitors and Batteries	19
2.5.	Comparison of Capacitor and Battery Charging Curves	20

2.6. Comparison of Charge and Discharge Behavior of Electrochemical Capacitors and Battery Cells Evaluated by Cyclic Voltammetry	22
2.7. Li Intercalation Electrodes—A Transition Behavior	25
2.8. Charging of a Nonideally Polarizable Capacitor Electrode	28
2.9. Comparative Summary of Properties of Electrochemical Capacitors and Batteries	29
References	31
General Reading References	31
 Chapter 3 Energetics and Elements of the Kinetics of Electrode Processes	
3.1. Introduction	33
3.2. Energetics of Electrode Processes	34
3.3. Energy Factors in Relation to Electrode Potential	37
3.4. Kinetics of Electrode Reactions at Metals	41
3.4.1. Currents and Rate Equations	41
3.4.2. Linearization of the Butler–Volmer Equation for Near-Equilibrium Conditions (low η)	45
3.5. Graphical Representation of the Exchange Current Density, i_o , and Behavior Near Equilibrium	46
3.6. Onset of Diffusion Control in the Kinetics of Electrode Processes	48
3.7. Kinetics when Steps Following an Initial Electron Transfer Are Rate Controlling	50
3.8. Double-Layer Effects in Electrode Kinetics	51
3.9. Electrical Response Functions Characterizing Capacitative Behavior of Electrodes	53
3.10. Instruments and Cells for Electrochemical Characterization of Capacitor Behavior	59
3.10.1. Cells and Reference Electrodes	59
3.10.2. Instruments	61
3.10.3. Two-Electrode Device Measurements	63
References	64
General Reading References	64
 Chapter 4 Elements of Electrostatics Involved in Treatment of Double Layers and Ions at Capacitor Electrode Interphases	
4.1. Introduction	67
4.2. Electrostatic Principles	68

4.2.1. Coulomb's Law: Electric Potential and Field, and the Significance of the Dielectric Constant	68
4.2.1.1. Units	68
4.2.1.2. Dielectric Constant	70
4.2.1.3. Electrostatic Potential, Field, and Force	71
4.2.1.4. Potential ϕ and Field E at an Ion	72
4.3. Lines of Force and Field Intensity—A Theorem	73
4.4. Capacity of a Condenser or Capacitor	74
4.5. Field Due to a Surface of Charges: Gauss's Relation	74
4.6. Poisson's Equation: Charges in a 3-Dimensional Medium	75
4.7. The Energy of a Charge	76
4.8. Electric Tension in a Dielectric in a Field	77
4.9. Electric Polarization Responses at the Molecular Level	78
4.9.1. Atoms and Molecules in Fields: Electronic Polarization	78
4.9.2. Interaction of a Permanent Dipole with a Field	79
4.9.2.1. Uniform Field	79
4.9.2.2. Nonuniform Field	79
4.9.2.3. Forces on a Quadrupole in a Field	80
4.10. Atoms and Molecules in Fields: Dielectric Properties and Dielectric Polarization	81
4.10.1. Dielectrics	81
4.10.2. Polarization of Solvent Molecules in Double-Layer and Ion Fields	81
4.10.3. Dipole Moments of Complex Molecules	82
4.11. Electric Polarization in Dielectrics	83
4.12. Energy and Entropy Stored by a Capacitor	83
References	86
General Reading References	86
 Chapter 5 Behavior of Dielectrics in Capacitors and Theories of Dielectric Polarization	
5.1. Introduction	87
5.2. Definitions and Relation of Capacitance to Dielectric Constant of the Dielectric Medium	88
5.3. Electric Polarization of Dielectrics in a Field	91
5.4. Formal Electrostatic Theory of Dielectrics	92

5.5.	Dielectric Behavior Due to Induced, Distortional Polarization	98
5.6.	Dielectric Polarization in a Simple Condensed Phase	98
5.7.	Dielectric Polarization in a System of Noninteracting but Orientable Dipoles.....	99
5.8.	Dielectric Polarization of Strongly Interacting Dipoles (High Dielectric Constant Solvents)	100
5.9.	Dielectric Behavior of the Solvent in the Double Layer.....	102
	References	104
Chapter 6	The Double Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance	
6.1.	Introduction	105
6.2.	Models and Structures of the Double Layer	108
6.3.	Two-Dimensional Density of Charges in the Double Layer	114
6.4.	Ionic Charge Density and Interionic Distances on the Solution Side of the Double Layer	116
6.5.	Electron-Density Variation: "Jellium" Model.....	117
6.6.	Electric Field across the Double Layer	119
6.7.	Double-Layer Capacitance and the Ideally Polarizable Electrode.....	121
6.8.	Equivalent Circuit Representation of Double-Layer Electrical Behavior	123
	References	124
Chapter 7	Theoretical Treatment and Modeling of the Double Layer at Electrode Interfaces	
7.1.	Early Models	125
7.2.	Treatment of the Diffuse Layer.....	127
7.3.	Capacitance of the Diffuse Part of the Double Layer	129
7.4.	Ion Adsorption and the Treatment of the Compact or Helmholtz Layer	133
7.4.1.	Stern's Treatment	133
7.4.2.	Quasi-Chemical Aspect of Anion Adsorption	135
7.5.	The Solvent as Dielectric of the Double-Layer Capacitor	136
7.5.1.	General	136
7.5.2.	Types of Solvents that Constitute the Double-Layer Interphase	137

7.5.3.	Dielectric Constant in the Double-Layer Interphase	138
7.5.4.	Electrostatic Polarization of Water as Solvent in the Double Layer.....	139
7.5.5.	Molecular-Level Treatments of Solvent Dipole Orientation at Charged Interfaces.....	141
7.5.5.1.	Two-State Dipole Orientation Treatments	141
7.5.5.2.	Cluster Models for Water Adsorption and Orientation	143
7.5.6.	H-Bonded Lattice Models	148
7.5.7.	Spontaneous Orientation of Water at Electrode Surfaces Due to Chemisorption	149
7.5.8.	Solvent Adsorption Capacitance at Solid Metals	151
7.5.9.	Recent Modeling Calculations	152
7.6.	The Metal Electron Contribution to Double-Layer Capacitance	156
7.6.1.	Origin of the Metal Contribution	156
7.6.2.	Profile of Electron Density at Electrode Surfaces.....	157
7.7.	The Potential Profile across the Diffuse Layer	160
7.8.	The Double Layer in Pores of a Porous Capacitor Electrode	161
	References	165
	General Reading References	168
Chapter 8	Behavior of the Double Layer in Nonaqueous Electrolytes and Nonaqueous Electrolyte Capacitors	
8.1.	Introduction	169
8.2.	Fundamental Aspects of Double-Layer Capacitance Behavior in Nonaqueous Solvent Media.....	170
8.3.	Comparative Double-Layer Capacitance Behavior in Several Nonaqueous Solutions	176
8.4.	General Outlook	180
	References	180
Chapter 9	The Double Layer and Surface Functionalities at Carbon	
9.1.	Introduction	183
9.1.1.	Historical	183
9.1.2.	Carbon Materials for Electrochemical Capacitors	185

9.2.	Surface Properties and Functionalities of Carbon Materials	186
9.3.	Double-Layer Capacitance of Carbon Materials	193
9.4.	Oxidation of Carbon	196
9.5.	Surface Specificity of Double-Layer Capacitance Behavior at Carbon and Metals	198
9.6.	Double-Layer Capacitance at Edge and Basal Planes of Graphite	199
9.7.	Materials Science Aspects of Carbon Materials for Conditioned Double-Layer Capacitors	203
9.7.1.	Heat and Chemical Treatments of Carbon Materials for Capacitors	203
9.7.2.	Research Requirements for Carbon Materials in Electrochemical Capacitors	208
9.7.3.	Electron Spin Resonance Characterization of Free Radicals at Carbon Surfaces	209
9.8.	Interaction of Oxygen with Carbon Surfaces	212
9.9.	Electronic Work Function and Surface Potentials of Carbon Surfaces	213
9.10.	Intercalation Effects	217
	References	219
	General Reading References	220
Chapter 10	Electrochemical Capacitors Based on Pseudocapacitance	
10.1.	Origins of Pseudocapacitance	221
10.2.	Theoretical Treatments of Pseudocapacitance (C_ϕ)	224
10.2.1.	Types of Treatment	224
10.2.2.	Electrosorption Isotherm Treatment of Pseudocapacitance: A Thermodynamic Approach	224
10.3.	Kinetic Theory of Pseudocapacitance	236
10.3.1.	Electrode Kinetics under Linearly Time-Variant Potential	236
10.3.2.	Evaluation of Characteristic Peak Current and Peak Potential Quantities	239
10.3.3.	Transition between Reversibility and Irreversibility	241
10.3.4.	Relation to Behavior under dc Charge and Discharge Conditions	243
10.4.	Potential Ranges of Significant Pseudocapacitances	246

10.5.	Origin of Redox and Intercalation Pseudocapacitances	248
10.6.	Pseudocapacitance Associated with Specific Adsorption of Anions and the Phenomenon of Partial Charge Transfer	253
10.7.	Pseudocapacitance Behavior at High-Area Carbon Materials	255
10.8.	Procedures for Distinguishing Pseudocapacitance (C_ϕ) from Double-Layer Capacitance (C_{dl})	255
	References	256
	General Reading References	257
Chapter 11	The Electrochemical Behavior of Ruthenium Oxide (RuO_2) as a Material for Electrochemical Capacitors	
11.1.	Historical Aspects	259
11.2.	Introduction	264
11.3.	Formation of RuO_2 Films that Have Capacitative Properties	265
11.4.	The Transition from Monolayer to Multilayer Electrochemical Formation of RuO_2	267
11.5.	States and Chemical Constitution of Electrochemically and Thermochemically Formed RuO_2 for Capacitors	270
11.6.	Mechanism of Charging and Discharging RuO_2	276
11.7.	Oxidation States Involved in Voltammetry of RuO_2 and IrO_2 Electrodes	277
11.7.1.	Oxidation States and Redox Mechanisms	277
11.7.2.	Charging in Inner and Outer Surface Regions of RuO_2 Films	279
11.8.	Conclusions on Mechanisms of Charging RuO_2 Capacitor Materials	282
11.9.	Weight Changes on Charge and Discharge	284
11.10.	dc and ac Response Behavior of RuO_2 Electrochemical Capacitor Electrodes	285
11.11.	Other Oxide Films Exhibiting Redox Pseudocapacitance Behavior	286
11.12.	Surface Analysis and Structure of $\text{RuO}_2\text{-TiO}_2$ Films	290
11.13.	Impedance Behavior of $\text{RuO}_2\text{-TiO}_2$ Composite Electrodes	292
11.14.	Use and Behavior of IrO_2	293

11.15. Comparative Oxide Film Behavior at Transition Metal Electrodes	293
References	295
General Reading References	297
Chapter 12 Capacitance Behavior of Films of Conducting, Electrochemically Reactive Polymers	
12.1. Introduction and General Electrochemical Behavior	299
12.2. Chemistry of the Polymerization Processes	304
12.3. General Behavior in Relation to Pseudocapacitance	312
12.4. Forms of Cyclic Voltammograms for Conducting Polymers	314
12.5. Classification of Capacitor Systems Based on Conducting Polymer Active Materials	320
12.6. Complementary Studies Using Other Procedures	322
12.7. Ellipsometric Studies of Conducting Polymer Film Growth and Redox Pseudocapacitative Behavior	327
12.8. Other Developments on Conducting Polymer Capacitors	331
References	332
General Reading References and Tabulations	334
Chapter 13 The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion Pairing and Solvation	
13.1. Introduction	335
13.2. Factors Determining the Conductance of Electrolyte Solutions	337
13.3. Electrolyte Conductance and Dissociation	338
13.4. Mobility of the Free (Dissociated) Ions	343
13.5. Role of the Dielectric Constant and Donicity of the Solvent in Dissociation and Ion Pairing	344
13.6. Favored Electrolyte–Solvent Systems	345
13.6.1. Aqueous Media	345
13.6.2. Nonaqueous Media	347
13.6.3. Molten Electrolytes	350
13.7. Properties of Solvents and Solutions for Nonaqueous Electrochemical Capacitor Electrolytes	351
13.8. Relation of Electrolyte Conductivity to Electrochemically Available Surface Area and Power Performance of Porous Electrode Supercapacitors	360

13.9. Separation of Cations and Anions on Charge and Its Effect on the Electrolyte's Local Conductivity	361
13.10. The Ion Solvation Factor	362
13.11. Compilations of Solution Properties	365
13.12. Appendix: Selection of Experimental Data on Properties of Electrolyte Solutions in Nonaqueous Solvents and Their Mixtures	366
13.12.1. Summary Tables	366
13.12.2. Some Graphically Represented Data from the Literature	366
13.12.3. Selected Tabulations	366
13.12.4. Conductivities	373
References	374
General Reading References	375
Chapter 14 Electrochemical Behavior at Porous Electrodes; Applications to Capacitors	
14.1. Introduction	377
14.2. Charging and Frequency Response of RC Networks	380
14.3. General Theory of Electrochemical Behavior of Porous Electrodes	383
14.3.1. System Requirements	383
14.3.2. The de Levie Model and its Treatment	383
14.3.3. Configuration of Double Layers in Porous Electrodes	403
14.4. Porous Electrode Interfaces as Fractal Surfaces	405
14.5. Atom Densities in Surfaces and Bulk of Fine Particles	406
14.6. Pore Size and Pore-Size Distribution	408
14.7. Real Area and Double-Layer Capacitance	411
14.8. Electro-osmotic Effects in Porous Electrodes	415
References	416
Chapter 15 Energy Density and Power Density of Electrical Energy Storage Devices	
15.1. Ragone Plots of Power Density vs. Energy Density	417
15.2. Energy Density and Power Density, and Their Relationship	421
15.2.1. General Considerations	421
15.2.2. Power Density	425
15.2.3. Relation to Energy Density	427
15.2.4. Power and Energy Density Relationships for Capacitors	433

15.2.5. Power Density Rating of a Capacitor.....	436
15.3. Power Limitation Due to Concentration Polarization	440
15.4. Relation between C-Rate Specification and Power Density.....	443
15.4.1. Formal Definition.....	443
15.4.2. Significance of C-Rate in Battery and Capacitor Discharge.....	444
15.5. Optimization of Energy Density and Power Density	448
15.5.1. Capacitor–Battery Hybrid Systems.....	448
15.5.2. Condition for Maximum Power Delivery ..	452
15.5.3. Test Modes	456
15.5.4. Constant Power Discharge Regime for a Capacitor.....	459
15.5.5. Effects of Temperature.....	462
15.6. The Entropy Component of the Energy Held by a Charged Capacitor.....	463
15.7. Energy Density of Electrolytic Capacitors	464
15.8. Some Application Aspects of Power-Density Factors	468
15.9. Energy Storage by Flywheel Systems.....	474
References	475
Chapter 16 AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems	
16.1. Introduction	479
16.2. Elementary Introductory Principles Concerning Impedance Behavior	486
16.2.1. Alternating Current and Voltage Relationships	486
16.2.2. Root-mean-square and Average Currents in ac Studies	489
16.3. Origin of the Semicircular Form of Complex-Plane Plots for Z'' vs. Z' over a Range of Frequencies	491
16.3.1. Impedance Relationships as a Function of Frequency	491
16.3.2. Time Constant and Characteristic Frequency ω_c	496
16.4. Significance of RC Time Constants	497
16.4.1. Transient Currents and Voltages	497
16.4.2. Formal Significance of the RC Product as a Time Constant	501
16.5. Measurement Techniques	502

16.5.1. AC Bridges	502
16.5.2. Lissajous Figures	503
16.5.3. Phase-Sensitive Detection Using Lock-in Amplifiers	504
16.5.4. Digital Frequency-Response Analyzers (Solartron and Other Instruments)	505
16.6. Kinetic and Mechanistic Approach to Interpretation of Impedance Behavior of Electrochemical Systems	506
16.6.1. Procedures and Role of Diffusion Control ..	506
16.6.2. Principles of the Kinetic Analysis Method ..	509
16.6.3. Example of the Kinetic Analysis of ac Behavior of the Cathodic H_2 Evolution Reaction	510
16.6.4. Relation to Linear-Sweep Modulation and Cyclic Voltammetry	513
16.6.4.1. Methodology	513
16.6.4.2. Response-Current Behavior	513
16.6.4.3. Relation between Response Currents in Cyclic Voltammetry and Alternating Voltage Modulation	515
16.6.5. Impedance of a Pseudocapacitance	518
References	524
Chapter 17 Treatments of Impedance Behavior of Various Circuits and Modeling of Double-Layer Capacitor Frequency Response	
17.1. Introduction and Types of Equivalent Circuits	525
17.2. Equivalent Series Resistance	528
17.2.1. Significance of esr	528
17.2.2. Impedance Limits for Some Commercial Capacitors Due to esr	530
17.3. Impedance Behavior of Selected Equivalent Circuit Models	532
17.4. Discharge of a Capacitor with esr into a Load Resistance, R_L	538
17.5. Simulation of Porous Electrode Frequency Response by Multielement RC Equivalent Circuits	547
17.6. Impedance Behavior of a Redox Pseudocapacitance ..	549
17.7. Electrochemistry at Porous Electrodes	555
References	556

Chapter 18	Self-Discharge of Electrochemical Capacitors in Relation to that at Batteries	
18.1.	Introduction	557
18.2.	Practical Phenomenology of Self-Discharge	557
18.3.	Self-Discharge Mechanisms	559
18.4.	Methodologies for Self-Discharge Measurements	561
18.5.	Self-Discharge by Activation-Controlled Faradaic Processes	562
18.6.	Slope Parameters for Decline of Potential on Self-Discharge	567
18.7.	Comparison with a Regular Capacitor Discharging through an Ohmic Leakage Resistance	568
18.8.	Self-Discharge under Diffusion Control	569
18.9.	Charging of a Nonideally Polarizable Electrode	573
18.10.	Self-Discharge of Double-Layer-Type Supercapacitor Devices	574
18.11.	Time-Dependent Redistribution of Charge in Nonuniformly Charged Porous Electrodes	575
18.12.	Temperature Effects on Self-Discharge	578
18.13.	Self-Discharge of a Pseudocapacitance	579
18.14.	Examples of Experimental Measurements on Self-Discharge of Carbon Capacitors and Carbon Fiber Electrodes	582
18.14.1.	Introduction	582
18.14.2.	Potential Decay (Self-Discharge) and Recovery in Terms of a Faradaic Process	583
18.14.3.	Self-Discharge Behavior of a Commercial Capacitor	584
18.15.	Self-Discharge and Potential Recovery Behavior at an RuO_2 Electrode	586
18.15.1.	Background	586
18.15.2.	Potential Decay (Self-Discharge) and Recovery in Relation to Charge and Discharge Curves	587
18.15.3.	Model for Potential Recovery	591
18.15.4.	Quasi-Reversible Potentials of RuO_2 after Self-Discharge	592
18.16.	Self-Discharge in a Stack	595
	References	595

Chapter 19	Practical Aspects of Preparation and Evaluation of Electrochemical Capacitors	
19.1.	Introduction	597
19.2.	Preparation of Electrodes for Small Aqueous Carbon-Based Capacitors for Testing Materials	598
19.3.	Preparation of RuO_x Capacitor Electrodes	599
19.4.	Preparation of RuO_x Capacitors with a Polymer Electrolyte Membrane (U.S. Patent 5,136,477)	600
19.5.	Assembly of Capacitors	600
19.6.	Experimental Evaluation of Electrochemical Capacitors	602
19.6.1.	Cyclic Voltammetry	602
19.6.2.	Impedance Measurements	602
19.6.3.	Constant Current Charge or Discharge	603
19.6.4.	Constant Potential Charge or Discharge	605
19.6.5.	Constant Power Charge or Discharge	605
19.6.6.	Leakage Current and Self-Discharge Behavior	605
19.7.	Other Test Procedures	606
	References	606
Chapter 20	Technology Development	
20.1.	Introduction	609
20.2.	Development of the Technology of Electrochemical Capacitors	610
20.2.1.	Classes of Capacitors	610
20.3.	Summaries of Device Developments and Technology Advances	612
20.4.	Materials Requirements	613
20.4.1.	Electrodes	613
20.4.2.	Carbon Electrode Materials	615
20.4.3.	Activation Procedures for Carbon Particles and Fibers	615
20.4.4.	Oxide, Redox-Pseudocapacitance Systems	618
20.4.5.	Conducting-Polymer Electrodes	618
20.4.6.	Electrolyte Systems	618
20.4.7.	Practical Design Aspects	620
20.4.8.	Capacitor Stacking	620
20.4.9.	Bipolar Electrode Arrangements	622
20.4.10.	Current Distribution in Capacitor Devices	623
20.4.11.	Scale-up Factors	625
20.5.	State of the Art	627

20.5.1. Electrode Development	627
20.5.2. Ruthenium Oxide Materials	634
20.5.3. Other Embodiments	635
20.6. Self-Discharge: Phenomenological Aspects	641
20.7. Thermal Management	643
20.8. Other Variables that Affect Capacitor Performance	644
20.8.1. Temperature Dependence of Capacitance and Capacitor Performance	644
20.8.2. Constant Current versus Constant Potential Charging Modes	648
20.8.3. Rate Effects on Charge or Discharge	649
20.9. Safety and Health Hazards in the Use of Electrochemical Capacitors	649
20.10. Recent Advances in the Use of Materials	651
20.11. Usage Basis	655
20.12. Commercial Development and Testing	658
20.13. Capacitor–Battery Hybrid Application for Electric Vehicle Drive Systems	663
20.14. Market Aspects	666
20.14.1. Electrochemical Capacitors in the Capacitor Market	666
20.14.2. Market Status and Future Opportunities	667
20.15. Technology Summary Based on Patent Literature	667
20.16. Energy Storage by High-Voltage Electrostatic Capacitors	668
20.17. Concluding Summary	670
20.18. Appendix on Information Sources	671
References	673
General Reading References	674
Chapter 21 Patent Survey	675
Index	685

Electrochemical Supercapacitors

Scientific Fundamentals and Technological Applications