

We wish to thank Dr Adele Brunetti for her collaboration in the preparation of this book, and for giving us the benefit of her knowledge in the field of gas separation and membrane reactors; she has been very useful for coordinating our activities during the various aspects of the final editing.

*Enrico Drioli and Giuseppe Barbieri
The University of Calabria and
National Research Council -
Institute of Membrane Technology, Italy*

Contents

Volume 1

Chapter 1	Multi-scale Molecular Modeling Approaches for Designing/ Selecting Polymers used for Developing Novel Membranes	1
<i>Elena Tocci and Pluton Pullumbi</i>		
1.1	Introduction	1
1.2	Computational Methods	5
1.2.1	Atomistic Simulation Methods	8
1.3	Numerical Simulation of Polymer Membranes	16
1.3.1	Force Field and Choice of Ensemble	16
1.3.2	Generation of Amorphous Cell Packings	17
1.3.3	Realistic Amorphous Cell Selection	18
1.3.4	Estimation of Gas Transport Properties through Amorphous Cells	19
1.4	Concluding Remarks	20
	Acknowledgements	23
	References	23
Chapter 2	Simulation of Polymeric Membrane Systems for CO₂ Capture	29
<i>Eric Favre</i>		
2.1	Introduction	29
2.1.1	Global Warming and Carbon Capture	29
2.1.2	Membrane Processes and Carbon Capture	31
2.2	Membrane Module Simulation Framework	32
2.2.1	Identifying Capture Step Boundary Conditions	32
2.2.2	Membrane Module Design: a Simplified Framework	34

2.2.3	Membrane Module Design: Classical Methodology	38
2.3	Simulation Studies for Post-combustion CO ₂ Capture by a Membrane Gas Separation Module	40
2.3.1	Addressing the Separation Problem: Selectivity Challenge	42
2.3.2	Tackling the Energy Requirement Issue	44
2.3.3	The Energy Requirement/Membrane Area Trade-off	45
2.3.4	Towards Multi-stage Processes	47
2.4	Scientific and Technological Challenges	48
2.4.1	Improved Materials: Selectivity and Productivity	48
2.4.2	Beyond Model Mixtures	51
2.4.3	Alternative Approaches and Prospects	52
2.5	Concluding Remarks	53
2.6	List of Symbols	54
	Acknowledgements	54
	References	54
Chapter 3	Physical Aging of Membranes for Gas Separations	58
	<i>B.W. Rowe, B.D. Freeman and D.R. Paul</i>	
3.1	Introduction	58
3.2	Aging Behavior in Thin and Ultra-thin Films	60
3.3	Additional Experimental Methods used to Study Physical Aging	67
3.4	Influence of Previous History and Experimental Conditions on Aging	72
3.5	Modeling Physical Aging Behavior	75
3.6	Concluding Remarks	78
	References	80
Chapter 4	Recent High Performance Polymer Membranes for CO₂ Separation	84
	<i>S.H. Han and Y.M. Lee</i>	
4.1	Introduction	84
4.2	Background	86
4.2.1	Solution-diffusion Mechanism for Gas Permeation	86
4.2.2	Trade-off Relationship in Gas Separation	88
4.2.3	High Performance Polymer Membranes for Gas Separation	89

4.3	Sorption-enhanced Polymer Membranes	92
4.3.1	Poly(Ethylene Oxide) Membranes	93
4.3.2	PEO-based Block Copolymer Membranes	97
4.3.3	Dendrimer Membranes	103
4.4	Diffusion-enhanced Membranes	105
4.4.1	Substituted Polyacetylene-based Membranes	105
4.4.2	Amorphous Fluoropolymer Membranes	107
4.4.3	Polymers with Intrinsic Microporosity	110
4.4.4	Thermally Rearranged Polymer Membranes	113
4.5	Concluding Remarks	119
	References	119
Chapter 5	Design of Membrane Modules for Gas Separations	125
	<i>M. Scholz, M. Wessling and J. Balster</i>	
5.1	Introduction	125
5.2	Membrane Modules	127
5.2.1	Plate-and-frame Modules	127
5.2.2	Spiral-wound Modules	129
5.2.3	Hollow Fiber Modules	131
5.2.4	Comparison of the Different Module Configurations	132
5.3	Operation of Gas Separation Hollow Fiber Membrane Modules	133
5.3.1	Flow within the Fiber (Lumen-side Feed, Shell-side Feed)	133
5.3.2	Operational Modes	135
5.3.3	Flow Patterns	136
5.4	Mathematical Description of the Performance of a Gas Separation Module	138
5.4.1	Characteristic Numbers	138
5.4.2	Description of Concentration, Pressure and Temperature Profiles	140
5.4.3	Energy Balance	141
5.4.4	Pressure Losses	142
5.5	Non-ideal Construction of Membrane Modules and the Influence of Non-idealities of Defect-free Dense Hollow Fiber Membranes	142
5.5.1	Influence of Fiber Diameter Variation	143
5.5.2	Influence of Variation in Membrane Thickness	143
5.5.3	Influence of Variation in Fiber Length	144
5.5.4	Influence of Membrane Defects	144
5.5.5	Influence of Blocked Fibers	146

5.6	Concluding Remarks	147
5.7	List of Symbols	148
	References	149
Chapter 6	Gas/Vapor Permeation Applications in the Hydrocarbon-processing Industry	150
	<i>Arnaud Baudot</i>	
6.1	Natural and Biogas Membrane Processing	150
6.1.1	Membrane Suppliers	150
6.1.2	Membrane-based Acid Gas Removal	152
6.1.3	Removal of Hydrogen Sulfide	160
6.1.4	Other Membrane-based Natural Gas Treatments	163
6.2	Petroleum Refining	168
6.2.1	Hydrogen Purification	168
6.2.2	Gasoline Isomerate Fractionation	170
6.3	Petrochemicals	173
6.3.1	Separation of Light Olefins/Paraffins	173
6.3.2	Separation of Xylene Isomers	184
6.3.3	Recovery of Monomers	185
6.4	Concluding Remarks	185
6.5	List of Abbreviations	186
	References	187
Chapter 7	Membrane Gas Separation Processes for Post-combustion CO₂ Capture	196
	<i>Peter Michael Follmann, Christoph Bayer, Matthias Wessling and Thomas Melin</i>	
7.1	Introduction	196
7.2	Boundary Conditions	197
7.2.1	Upstream Boundary Conditions: the Power Plant	197
7.2.2	Downstream Boundary Conditions: CO ₂ Transport	198
7.2.3	Downstream Boundary Conditions: CO ₂ Storage	199
7.2.4	Summary of Boundary Conditions	200
7.3	Membranes and Membrane Model	200
7.4	Driving Force	201
7.4.1	Feed Compression	201
7.4.2	Suction at the Permeate Side	202
7.4.3	Feed Compression and Suction at the Permeate Side	202
7.4.4	Sweep Operation	203

7.5	Techno-economic Analysis	203
7.5.1	Process Configurations	203
7.5.2	Key Performance Indicators and Economics	204
7.5.3	Process without Retentate Recycling	206
7.5.4	Process with Retentate Recycling	208
7.6	Competing Technologies	211
7.7	Concluding Remarks	211
	Acknowledgements	212
	References	212
Chapter 8	Commercial Applications of Membranes in Gas Separations	215
	<i>Pushpinder S. Puri</i>	
8.1	Gas Separation Membrane Systems	215
8.1.1	Gas Separation Processes	216
8.1.2	Polymeric Gas Separation Membrane Systems	217
8.2	Major Gas Separation Membrane Producers	225
8.3	Gas Separation Membrane Applications	226
8.3.1	Air Separation Membranes	226
8.3.2	Air Drying	230
8.3.3	Hydrogen Separation Membrane Systems	232
8.3.4	Natural Gas Upgrading Systems	234
8.3.5	Carbon Dioxide Separation Membrane Systems: CO ₂ Capture from Flue Gases	239
8.3.6	Organic Vapor Separation Systems	240
8.4	Concluding Remarks	242
	References	243
Chapter 9	Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications	245
	<i>Isabel A.A.C. Esteves and José P.B. Mota</i>	
9.1	Gas Separation Technologies	245
9.1.1	Introduction	245
9.1.2	Pressure Swing Adsorption	247
9.2	Hybrid Membrane/PSA Processes for Gas Separation	251
9.2.1	Scheme A: the More Permeable Component is the Least Adsorbed	260
9.2.2	Scheme B: the More Permeable Component is the More Adsorbed	268
9.3	Concluding Remarks	272
	References	273
	Subject Index	276

Volume 2

Chapter 10 Modeling of Membrane Reactors for Hydrogen Production and Purification

F. Gallucci, M. van Sint Annaland and J.A.M. Kuipers

1

10.1	Introduction	1
10.2	Limit Conversion in Membrane Reactors	3
10.3	Packed Bed Membrane Reactors	6
10.3.1	One-dimensional Models	7
10.3.2	Two-dimensional Models	13
10.4	Fluidized Bed Membrane Reactors	17
10.4.1	Modeling of Fluidized Bed Membrane Reactors	18
10.4.2	Multi-Scale Modeling of Dense Gas–Solid Systems	25
10.5	Appendix A: Constitutive Equations used in Packed Bed Modeling	29
10.6	Appendix B: Constitutive Equations used in Fluidized Bed Modeling	32
10.7	List of Symbols	34
	References	35

Chapter 11 Palladium-based Membranes in Hydrogen Production

Rune Bredesen, Thijs A. Peters, Marit Stange, Nicla Vicinanza and Hilde J. Venvik

40

11.1	Introduction	40
11.2	Conventional Hydrogen Production and Applications	41
11.2.1	Hydrogen Production	41
11.2.2	Hydrogen Application	44
11.3	Development of Palladium-based Membranes and Stability Issues in Hydrogen Production	45
11.3.1	Membrane Development	45
11.3.2	Membrane Fabrication Methods	45
11.3.3	Palladium-alloys and their Implications for Membrane Stability	47
11.3.4	Structural Stability of Composite Palladium-based Membranes	49
11.4	Integration of Palladium-based Membranes in Hydrogen Production	50
11.4.1	Methane Reforming	50
11.4.2	Water Gas Shift	55

11.4.3	Reforming of Alcohols	57
11.4.4	Dehydrogenation and Coupled Endothermic and Exothermic Reactions	60
11.4.5	Decomposition of Ammonia	62
11.5	Demonstration of Up-scaled Hydrogen Production by Palladium-based Membrane Reactors	63
11.6	Examples of Up-scaled State-of-the-Art Palladium-based Membrane Technology	64
11.6.1	CRI-Criterion	64
11.6.2	Pall Corporation	65
11.6.3	Energy Centre of the Netherlands	69
11.6.4	Membrane Reactor Technologies	70
11.7	Concluding Remarks	70
	Acknowledgements	71
	References	71

Chapter 12 Membrane Reactors in Hydrogen Production

A. Brunetti, G. Barbieri and E. Drioli

87

12.1	Introduction	87
12.2	Membranes and Membrane Reactors for Hydrogen Production	90
12.3	Current and Potential Applications of Membrane Reactors for Hydrogen Production	92
12.3.1	Steam Reforming of Methane and other Light Hydrocarbons	93
12.3.2	Water Gas Shift	95
12.3.3	Carbon Monoxide Clean-up	99
12.4	New Indexes for the Comparison of Membrane and Traditional Reactors	100
12.4.1	Case Study: Water Gas Shift Reaction in a Membrane Reactor	100
12.5	Concluding Remarks	107
12.6	List of Symbols, Abbreviations and Dimensionless Numbers	107
	Acknowledgements	108
	References	108

Chapter 13 Palladium-based Selective Membranes for Hydrogen Production

G. Iaquaniello, M. De Falco and A. Salladini

110

13.1	Basic Features of Membrane Reactors	110
13.1.1	Selective Membranes	111
13.1.2	Membrane Fabrication Methods	114

13.1.3	Palladium-based Membranes Available on the Market	116
13.1.4	Membrane Cost Analysis	117
13.2	Membrane Reactor Architectures	118
13.2.1	Configuration Layouts	119
13.2.2	Benefits and Drawbacks	121
13.3	Case Studies	124
13.3.1	Natural Gas Steam Reforming	124
13.3.2	Water Gas Shift Reactor	127
13.3.3	Propane Dehydrogenation	128
13.3.4	Catalytic Partial Oxidation	129
13.3.5	Catalytic Decomposition of Hydrogen Sulfide	130
13.4	Concluding Remarks	132
	References	133

Chapter 14 Polarization and Inhibition by Carbon Monoxide in Palladium-based Membranes

Giuseppe Barbieri, Alessio Caravella and Enrico Drioli

137

14.1	Palladium-based Membranes: Overview and Potential for Hydrogen Purification	137
14.2	Objectives	139
14.3	Gas-surface Interactions for Palladium-based Membranes	139
14.4	Concentration Polarization in Gas Separation	140
14.5	Inhibition by Carbon Monoxide in Palladium-based Membranes	142
14.6	Coupled Effect of Concentration Polarization and Inhibition by Carbon Monoxide	142
14.6.1	Concentration Polarization Coefficient	143
14.6.2	Inhibition Coefficient	148
14.6.3	Overall Permeation Reduction Coefficient	149
14.6.4	Main Results of Analysis	151
14.7	Concluding Remarks	157
14.8	List of Symbols and Abbreviations	158
	Acknowledgement	158
	References	158

Chapter 15 Carbon Molecular Sieve Membranes for Gas Separation

May-Britt Hägg and Xuezhong He

162

15.1	Introduction	162
15.2	Production of Carbon Molecular Sieve Membranes	164

15.2.1	Material Selection	164
15.2.2	Material Functionalization	165
15.2.3	Precursor Preparation	166
15.2.4	Pretreatment	166
15.2.5	Carbonization	168
15.2.6	Post-treatment	169
15.3	Characterization for Carbon Molecular Sieve Membranes	170
15.3.1	General Characterization Techniques	170
15.3.2	Gas Sorption	173
15.3.3	Gas Permeation	174
15.3.4	Aging and Regeneration	177
15.4	Theory on Transport Mechanisms for Carbon Molecular Sieve Membranes	178
15.4.1	Knudsen Diffusion	179
15.4.2	Selective Surface Flow	179
15.4.3	Molecular Sieving	180
15.5	Module Construction	180
15.6	Potential Industrial Applications for Carbon Molecular Sieve Membranes	181
15.6.1	Biogas	181
15.6.2	Natural Gas	182
15.6.3	Flue Gas	183
15.6.4	Air Separation	184
15.6.5	Petrochemical Industry	185
15.6.6	High-temperature Applications	186
15.7	Concluding Remarks	187
	Acknowledgement	188
	References	188

Chapter 16 Perovskite Membranes for High Temperature Oxygen Separation

F. Liang and J. Caro

16.1	Introduction	192
16.2	Materials Aspects of Oxygen Transporting Membranes	194
16.3	Oxygen Separation by Oxygen Transporting Membranes	196
16.3.1	Using Sweep Gases	196
16.3.2	With Evacuation on the Permeate Side	201
16.3.3	Applying Elevated Pressure on the Permeate Side	202
16.3.4	Combining Evacuation of the Permeate Side and Elevated Pressure on the Feed Air Side	203

16.4	Oxygen Separation from Air with its Immediate Consumption in a Partial Oxidation	204
16.4.1	Partial Oxidation of Methane to Syngas	204
16.4.2	Oxidative Coupling of Methane	205
16.4.3	Oxi-dehydrogenation of Alkanes to the Corresponding Olefins	207
16.5	Oxygen Separation from Oxygen-containing Gases and its <i>in situ</i> Consumption in a Partial Oxidation	209
16.5.1	Water as an Oxygen Source for Hydrogen Production Coupled with Synthesis Gas or Ethylene Production	210
16.5.2	Decomposition of N ₂ O and NO into Nitrogen and using the Abstracted Oxygen for Synthesis Gas Production	212
16.6	Engineering and Scale-up Aspects	214
16.7	Comparing Cryogenic Air Distillation, Pressure Swing and Permeation with Organic and Inorganic Membranes: Economic Evaluation	215
16.8	Concluding Remarks	217
	Acknowledgements	218
	References	218

Chapter 17 Zeolite Membranes for Gas Separations
C. Algieri, G. Barbieri and E. Drioli

17.1	Introduction to Zeolite Membranes	223
17.2	Preparation of Zeolite Membranes	225
17.3	Mass Transport in Zeolite Membranes	229
17.4	Zeolite Membranes and Gas Separations	231
17.4.1	Carbon Dioxide Separation	231
17.4.2	Hydrogen Separation	240
17.5	Concluding Remarks	248
17.6	List of Symbols	249
	Acknowledgements	249
	References	249

Chapter 18 Engineering Aspects of MIEC Hollow Fiber Membranes for Oxygen Production
X. Tan and K. Li

18.1	Introduction	253
18.2	Oxygen Permeation in MIEC Ceramic Membranes	254
18.2.1	Oxygen Permeation Mechanism	254
18.2.2	Permeation Flux	255
18.2.3	Stability	258

18.3	Development of MIEC Hollow Fiber Membranes	260
18.3.1	Preparation	260
18.3.2	Surface Modification	263
18.3.3	Mechanical Strength	264
18.4	Design of Hollow Fiber Membrane Systems	265
18.4.1	Operation Mode	265
18.4.2	Design Equation	266
18.4.3	Hollow Fiber Membrane Systems	269
18.5	Energy Consumption and Cost Analysis	270
18.6	Concluding Remarks	274
18.7	List of Symbols	275
	References	276

Chapter 19 New Metrics in Membrane Gas Separation
A. Brunetti, G. Barbieri and E. Drioli

19.1	Introduction	279
19.2	Current Applications of Membranes in Gas Separation	280
19.2.1	Case Study: Hydrogen Recovery	281
19.3	Comparison of Membrane Gas Separation and the Other Separation Technologies: Engineering Evaluation	284
19.3.1	Technologies for Gas Separation	284
19.3.2	Selection Guidelines for Gas Separation	286
19.3.3	Case Study: Selection Guidelines for the Separation and Recovery of Hydrogen in Refineries	291
19.4	New Metrics for Gas Separation	294
19.4.1	Case study: H ₂ Separation from H ₂ /N ₂ and H ₂ /CO Mixtures with co-polyimide Hollow Fiber Modules	296
19.5	Further Evaluations in Membrane Process Design: The Exergetic Aspects	298
19.6	Concluding Remarks	300
	Acknowledgement	300
	References	300