

Contents

Preface

v

Chapter 1 Ideas and Basic Techniques

1

1. What is a mathematical model?	1
2. Significance of models to scientific research	2
3. Types of model	3
A. Mechanistic models	4
B. Empirical models	5
C. Models, predicted data, and experimental data	5
D. Summary	7
4. Two simple examples	8
A. Logistic equation—a whole-plant growth curve	8
B. Michaelis-Menten equation—a model for the substrate dependence of growth, and for membrane transport	11
5. Models and sub-models; empiricism and phenomenology	14
6. Useful conservation laws	15
A. Conservation of matter	16
B. Conservation of energy	16
C. Conservation of momentum and angular momentum	16
7. The general problem	16
A. Dynamic deterministic models	17
B. Processes and properties; variables	19
C. Parameters and constants	21
D. Deterministic and stochastic models	21
E. Structure and pattern	22
F. Constraints	23
G. Signals and their interpretation	24
H. Alternative pathways of development; switches	24
I. Stability	25
J. Time scales	25
K. Biological variability and indeterminacy	26
8. The use of thermodynamics and irreversible thermodynamics in modelling	27
9. The role of computers	28
A. Fitting	28
B. Computing	31
C. Special-purpose modelling languages	32
D. Validation	33
10. Units and useful conversion factors	33
A. Carbon dioxide concentrations and densities	35

Chapter 2	Some Topics of General Physiological Importance	36
1.	Structure and storage	36
2.	Sources and sinks	38
3.	Utilization of substrates	42
	A. Rectangular hyperbola (single substrate)	42
	B. Non-rectangular hyperbola (single substrate)	44
	C. Rectangular hyperbola (two substrates)	46
	D. Sigmoidal response (single substrate)	47
4.	Threshold response curves	48
5.	Translocation	50
	A. Definitions	51
	B. Diffusion and facilitated diffusion	53
	C. Mass flow—actuated by osmotic pressure	55
	D. Mass flow—simple cyclosis	56
	E. Mass flow—other mechanisms	57
	F. Discussion—phenomenology of translocation	60
6.	Membrane transport	61
	A. ATP-driven transport with a rapidly diffusing carrier	62
	B. ATP-driven transport with a slowly diffusing carrier	64
	C. Michaelis-Menten processes in parallel	66
	D. Michaelis-Menten processes in series	67
	E. Dual mechanisms and multiphase mechanisms	68
	F. Thellier's electro-kinetic model	69
7.	Translocation with active transport—a non-polar model	72
Chapter 3	Light Interception by Plants and Crops	74
1.	The isolated plant	74
	A. A semi-empirical method	75
	B. Outline of a rigorous method	78
2.	The transition from plant to crop behaviour; within-plant and between-plant shading; efficiencies of light interception by organs, plants, and crops	80
3.	Crops	83
	A. An empirical method	83
	B. Saeki's method for the light flux density incident on leaf surfaces	88
4.	Photosynthesis and spatial variability of light	89
Chapter 4	Photosynthesis	92
1.	A survey of some light-response curves	93
2.	Photosynthetic response to light and CO_2	95
3.	Effects of heterogeneity in light flux density and CO_2 density on photosynthetic response	97
	A. Integration of the Blackman response curve	97
	B. Integration of the rectangular-hyperbola response curve	99
	C. Integration of the non-rectangular-hyperbola response curve	99
	D. Distribution of CO_2 density	99

E. Discussion of the effects of distributed light flux densities and CO ₂ densities on photosynthesis	101
4. Rabinowitch's model with a constant respiration term	101
5. A model of leaf photosynthesis including photorespiration and the oxygen effect	103
6. Crop Photosynthesis	106
A. Blackman response with dark respiration	107
B. Simple rectangular hyperbola with dark respiration	107
C. Rectangular hyperbola with compensation points	108
D. Leaf response equation incorporating photorespiration	108
E. Modified rectangular hyperbola with dark respiration	109
F. Rabinowitch's equation	110
Chapter 5 Photosynthesis in Fluctuating Light	111
1. A simple model	111
2. Response to a step change in light flux density	113
3. Response to an alternating light flux density	114
4. Estimation of photosynthesis from light flux density data	118
5. Quantitative characterization of type of day	121
6. Discussion	122
Chapter 6 Growth, Energy, and Respiration	123
1. Respiration, growth, and maintenance in a homogeneous system	124
2. Some applications	128
A. McCree's experiment on white clover	128
B. Growth and respiration in cotton bolls	128
3. Substrate dependence of respiratory components; wastage respiration	131
4. Energy and heat production	132
5. Respiration, growth, and maintenance in a two-component system	134
Chapter 7 A Whole-Plant Model with Structure: Storage Partitioning	137
1. Assumptions	140
A. Validity of assumptions	141
2. Mathematical analysis	141
3. Fit of steady-state model to tomato plant growth-analysis data	146
4. Response to a step-change in the environment	148
5. Discussion	149
Chapter 8 Partitioning Photosynthate during Vegetative Plant Growth	152
1. Assumptions	153
2. Mathematics of the model	155
3. Steady-state exponential growth	158
4. Derivation of whole-plant growth-analysis quantities	160
5. Reduction of steady-state model to a whole-plant model	163
6. Steady-state solutions	164

Chapter 9 Partitioning Carbon and Nitrogen during Vegetative Plant Growth	172
1. Partitioning carbon and nitrogen between shoot and root	173
A. Assumptions	173
B. Mathematics of the model	176
C. Derivation of whole-plant growth-analysis quantities	178
D. Reduction of model to a whole-plant model	180
E. Steady-state exponential growth	181
F. Steady-state solutions	182
G. Discussion of steady-state results	184
H. Critical parameters of the model	187
I. Time-course of recovery following removal of part of shoot	188
2. Partitioning carbon and nitrogen between leaf, stem, and root	190
A. The "star-delta" transformation	191
B. Hormone effects. Balancing an unbalanced model	192
Chapter 10 Development and Senescence; a New Growth Equation	196
1. Two main types of development	196
2. Dynamics of cell division and growth—elementary considerations	197
A. Dry weight relations	200
B. Discussion	201
3. Dry weight gain of a single cell	201
4. Vegetative plant growth, with senescence, terminated by flowering, but without transport resistances	204
A. Results	208
Chapter 11 Unrestricted Vegetative Plant Growth, with Senescence and Transport	211
1. Assumptions	212
A. Meristem and shoot growth	212
B. Root growth	215
C. Photosynthesis and light interception	216
D. Transport	217
E. Utilization of substrate and substrate balance	218
F. Whole-plant growth	219
G. Seed reserves	220
2. Overall mathematical formulation	220
3. Numerical assumptions	222
4. Results and discussion	225
Chapter 12 A Biochemical Switch, Development, and Flower Initiation	233
1. Assumptions	234
A. Substrate	234
B. Morphogens	235
C. Enzyme synthesis and degradation	235

2. Mathematical analysis	237
A. Steady-state solutions	238
B. Dynamic behaviour	239
3. Flowering in plants	241
4. Discussion	243
Chapter 13 Primordial Initiation and Phyllotaxis	245
1. Assumptions and analysis	246
A. Apical shape and size	246
B. Sources, sinks, and diffusion. Morphogen field from a single primordium	247
C. Primordial initiation: two, three, and four primordia	250
D. Fifth primordium and higher primordia	254
2. Solutions	255
A. Sequential generation of primordia	255
B. A self-consistent method for steady-state solutions	258
3. Time-dependent solutions	260
4. Physiological applications	260
A. Apex size and spatial competence	260
B. Non-spiral phyllotaxis	261
C. Bract formation and flowering	262
D. Parameters α and λ , and plastochrone ratio p	262
5. Discussion	263
Chapter 14 Visible Aspects of the Form or External Structure of Plants and Crops	265
1. Plant variability, and the selection of a "typical" plant	267
2. Plant form, and the point quadrat intercepting properties of a plant	270
3. Crops; some properties of a crop of randomly distributed plants	274
Definitions of Principal Symbols	277
Glossary	297
Bibliography	307
Subject Index	315