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A bout fourteen billion years ago, the universe arose 
as a cataclysmic explosion of hot, energy-rich sub­
atomic particles. Within seconds, the simplest ele­

ments (hydrogen and helium) were formed. As the 
universe expanded and cooled, material condensed 
under the influence of gravity to form stars . Sorne stars 
became enormous and then exploded as supernovae, 
releasing the energy needed to fuse simpler atomic 
nuclei into the more complex elements . Atoms and mol­
ecules formed swirling masses of dust particles, and 
their accumulation led eventually to the formation of 
rocks, planetoids, and planets. Thus were produced, 
over billions of years, Earth itself and the chemical ele­
ments found on Earth today. About four billion years 
ago, life aros e-simple microorganisms with the ability 
to extract energy from chemical compounds and, later, 
from sunlight, which they used to make a vast array of 
more complex biomolecules from the simple elements 
and compounds on the Earth's surface. We and all other 
living organisms are made of stardust. 

Biochemistry asks how the remarkable properties 
of living organisms arise from the thousands of different 
biomolecules. When these molecules are isolated and 
examined individually, they conform to all the physical 
and chemical laws that describe the behavior of inani­
mate matter-as do all the processes occurring in living 
organisms . The study of biochemistry shows how the 
collections of inanimate molecules that constitute living 
organisms interact to maintain and perpetuate life ani­
mated solely by the physical and chemical laws that 
govern the nonliving universe. 

Yet organisms possess extraordinary attributes , 
properties that distinguish them from other collections 

of matter. What are these distinguishing features of 
living organisms? 

A high degree of chemical complexity and 
microscopic organization. Thousands of different 
molecules make up a cell's intricate internal struc­
tures (Fig. l-la). These include very long polymers, 
each with its characteristic sequence of subunits, its 
unique three-dimensional structure, and its highly 
specific selection of binding partners in the cell. 

Systems for extracting, transfonning, and using 
energy from the environment (Fig. 1-1 b) , enabling 
organisms to build and maintain their intricate 
structures and to do mechanical, chemical, osmotic, 
and electrical work. This counteracts the tendency of 
all matter to decay toward a more disordered state, to 
come to equilibrium with its surroundings . 

Defined functions for each of an organism's 
components and regulated interactions among 
them. This is true not only of macroscopic struc­
tures, such as leaves and stems or hearts and lungs, 
but also of microscopic intracellular structures and 
individual chemical compounds. The interplay among 
the chemical components of a living organism is 
dynamic; changes in one component cause coordi­
nating or compensating changes in another, with the 
whole ensemble displaying a character beyond that 
of its individual parts. The collection of molecules 
carries out a program, the end result of which is 
reproduction of the program and self-perpetuation of 
that collection of molecules-in short, life. 

Mechanisms for sensing and responding to 
alterations in their surroundings. Organisms 
constantly adjust to these changes by adapting 
their internal chemistry or their location in the 
environment. 

A capacity for precise self-replication and 
self-assembly (Fig. 1-lc). A single bacterial cell 
placed in a sterile nutrient medium can give rise to 

1 
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