

Contents

Foreword xi

I

WATER QUALITY INDICES BASED PREDOMINANTLY ON PHYSICO-CHEMICAL CHARACTERISTICS

1. Why Water-Quality Indices	3
1.1. Introduction	3
1.2. Water-Quality Indices (WQIs)	4
1.3. Back to Water-Quality Indices (WQIs)	5
1.4. The First Modern WQI: Horton's Index	5
1.5. More on the Benefits of WQI	6
1.6. WQIs Based on Bioassessment	6
References	7
2. Approaches to WQI Formulation	9
2.1. Introduction	9
2.2. The Common Steps	9
2.3. Parameter Selection	10
2.4. Transformation of the Parameters of Different Units and Dimensions to a Common Scale: Making Subindices	11
2.5. Assignment of Weightages	15
2.6. Aggregation of Subindices to Produce a Final Index	15
2.7. Characteristics of Aggregation Models	18
References	23
3. 'Conventional' Indices for Determining Fitness of Waters for Different Uses	25
3.1. General	26
3.2. Brown's or the National Sanitation Foundation's Water-Quality Index (NSF-WQI)	26

3.3. Nemerow and Sumitomo's Pollution Index	29
3.4. Prati's Implicit Index of Pollution	30
3.5. Deininger and Landwehr's PWS Index	31
3.6. Mcduffie and Haney's River Pollution Index (RPI)	32
3.7. Dinius' Water-Quality Index (1972)	33
3.8. O'Connor's Indices	34
3.9. Walski and Parker's Index	34
3.10. Stoner's Index	35
3.11. Bhargava's Index (1983, 1985)	36
3.12. Dinius' Second Index	38
3.13. Viet and Bhargava's Index (1989)	39
3.14. The River Ganga Index of Ved Prakash et al.	39
3.15. Smith's Index (1990)	40
3.16. Chesapeake Bay Water-Quality Indices (Haire et al. 1991)	47
3.17. The Aquatic Toxicity Index	47
3.18. Li's Regional Water Resource Quality Assessment Index (1993)	48
3.19. A Two-Tier WQI	48
3.20. Use of WQI To Assess Pond Water Quality (Sinha, 1995)	48
3.21. Use of WQI to Study Hanuman Lake, Jabalpur (Dhamija and Jain 1995)	50
3.22. Coastal Water-Quality Index for Taiwan (Shyue et al. 1996)	50
3.23. The Modified Oregon Water-Quality Index (Cude, 2001)	51
3.24. The 'Overall Index of Pollution'	52
3.25. The Canadian Water-Quality Index (CCME, 2001) and the Index of Said et al. (2004)	54
3.26. A 'Universal' Water-Quality Index	54
3.27. Improved Methods of Aggregation	55
3.28. A First-Ever WQI For Vietnam	57
3.29. A Comparison	61
References	61

4. Combating Uncertainties in Index-based Assessment of Water Quality: The Use of More Advanced Statistics, Probability Theory and Artificial Intelligence 63

References 66

5. Indices Based on Relatively Advanced Statistical Analysis of Water-Quality Data 67

5.1. Introduction 67

5.2. Harkin's Index 68

5.3. Beta Function Index 69

5.4. An Index with a Multi-pronged ('Mixed') Aggregation Function 69

5.5. WQI for Mediterranean Costal Water of Egypt Based on Principal-Component Analysis 71

5.6. WQI for Rio Lerma River 71

5.7. A New WQI Based on A Combination of Multivariate Techniques 71

5.8. Indices for Liao River Study 74

5.9. Water-Quality Index Based on Multivariate Factor Analysis (Coletti et al., 2010) 75

5.10. Study of Anthropogenic Impacts on Kandla Creek, India 76

References 77

6. Water-Quality Indices Based on Fuzzy Logic and Other Methods of Artificial Intelligence 79

6.1. Introduction 80

6.2. Fuzzy Inference 80

6.3. A Primer on Fuzzy Arithmetic 81

6.4. Towards Application of Fuzzy Rules in Developing Water-Quality Indices: The Work of Kung et al. (1992) 83

6.5. Assessment of Water Quality Using Fuzzy Synthetic Evaluation and Other Approaches Towards Development of Fuzzy Water-Quality Indices 86

6.6. Reach of Fuzzy Indices in Environmental Decision-Making 88

6.7. A WQI Based on Genetic Algorithm 92

6.8. The Fuzzy Water-Quality Index of Ocampo-Duque et al. (2006) 93

6.9. ICAGA'S Fuzzy WQI 97

6.10. Use of Ordered Weighted Averaging (OWA) Operators for Aggregation 102

6.11. Fuzzy Water-Quality Indices for Brazilian Rivers (Lermontov et al., 2008, 2009; Roveda et al., 2010) 105

6.12. A Hybrid Fuzzy – Probability WQI 107

6.13. An Entropy-Based Fuzzy WQI 109

6.14. A Fuzzy River Pollution Decision Support System 112

6.15. A Fuzzy Industrial WQI 114

6.16. Impact of Stochastic Observation Error and Uncertainty in Water-Quality Evaluation 114

References 114

7. Probabilistic or Stochastic Water-Quality Indices 119

7.1. Introduction 119

7.2. A 'Global' Stochastic Index of Water Quality 121

7.3. A Modification in the Global Stochastic Index by Cordoba et al. (2010) 124

References 125

8. 'Planning' or 'Decision-Making' Indices 127

8.1. Introduction 128

8.2. Water-Quality Management Indices 128

8.3. Dee's WQI-Based Environmental Evaluation System 131

8.4. Zoeteman's Pollution Potential Index (PPI) 131

8.5. Environmental Quality Index Presented by Inhaber (1974) 132

8.6. Johanson and Johanson's Pollution Index 134

8.7. Ott's NPPI 134

8.8. Water-Quality Indices for Operational Management 134

8.9. Index to Regulate Water-Management Systems 136

8.10. Index to Assess the Impact of Ecoregional, Hydrological and Limnological Factors 136

8.11. A Watershed-Quality Index 137

8.12. Index for Watershed Pollution Assessment 137

8.13. A GIS-Assisted Water-Quality Index for Irrigation Water 137

8.14. A System of Indices for Watershed Management 141

8.15. A Fuzzy WQI for Water-Quality Assessment of Shrimp Farms 141

8.16. An Index to Assess Acceptability of Reclaimed Water for Irrigation 143

8.17. An Index for Irrigation Water-Quality Management 143

8.18. Index for the Analysis of Data Generated by Automated Sampling (Continuous Monitoring) Networks 144

8.19. An Index of Drinking-Water Adequacy for the Asian Countries 147

8.20. Indices for the Prediction of Stream of Quality in an Agricultural Setting 148

8.21. An Index to Assess Extent of Wastewater Treatment 149

8.22. Use of Indices for Prioritising Placement of Water-Quality Buffers to Control Nonpoint Pollution 151

References 151

9. Indices for Assessing Groundwater Quality 155

9.1. Introduction 156

9.2. The WQI of Tiwari and Mishra (1985) 156

9.3. Another Oft-Used Groundwater-Quality Index Development Procedure 156

9.4. Index of Aquifer Water Quality (Melloul and Collin, 1998) 158

9.5. Groundwater-Quality Index of Soltan (1999) 159

9.6. A Groundwater Contamination Index 160

9.7. An Index for Surface Water as well as Groundwater Quality 160

9.8. Use of Groundwater-Quality Index, Contamination Index and Contamination Risk Maps for Designing Water-Quality Monitoring Networks 161

9.9. Attribute Reduction in Groundwater-Quality Indices Based on Rough Set Theory 163

9.10. Index Development Using Correspondence Factor Analysis 163

9.11. Indices for Groundwater Vulnerability Assessment 165

9.12. Groundwater-Quality Index to Study Impact of Landfills 165

9.13. Indices for Optimising Groundwater-Quality Monitoring Network 167

9.14. Economic Index of Groundwater Quality Based on the Treatment Cost 168

9.15. The Information-Entropy-Based Groundwater WQI of Pei-Yue et al. (2010) 168

9.16. A WQI for Groundwater Based on Fuzzy Logic 169

9.17. Use of WQI and GIS in Aquifer-Quality Mapping 170

References 173

10. Water-Quality Indices of USA and Canada 175

10.1. Introduction 175

10.2. WQIs of Canada 176

10.3. WQIs of the USA 180

10.4. The WQI of Said et al. (2004) 180

References 185

11. WQI-Generating Software and a WQI-based Virtual Instrument 187

11.1. Introduction 187

11.2. The Basic Architecture of Qualidex 187

Reference 204

II

WATER QUALITY INDICES BASED ON BIOASSESSMENT

12. Water-Quality Indices Based on Bioassessment: An Introduction 207

12.1. Introduction 207

12.2. Biotic Indices in the Context of the Evolution of Water-Quality Indices 208

12.3. Stressor-Based and Response-Based Monitoring Approaches 211

12.4. Biotic Indices – General 214

References 215

13. The Biotic Indices 219	14.8. The Present and the Future of IBI 314
13.1. Introduction 220	14.9. The Now Well-Recognised Attributes of IBI 321
13.2. The Challenge of Finding 'Control' Sites 221	14.10. The Shortcomings of IBI 322
13.3. The Cost Associated with the Use of Biological Assessments of Water 221	References 324
13.4. Organisms Commonly used in Bioassessment 222	15. Multivariate Approaches for Bioassessment of Water Quality 337
13.5. Biotic Indices for Freshwater and Saline water Systems Based on Macroinvertebrates 223	15.1. Introduction 337
13.6. Biotic Indices as Indicators of Water Safety and Human Health Risks 234	15.2. Rivpacs 338
13.7. Comparison of Performances of Different Biotic Indices 235	15.3. Variants of Rivpacs 341
13.8. Biotic Indices and Developing Countries 239	15.4. The Multivariate Approaches and the IBI 345
13.9. Limitations of Biotic Indices 239	References 348
13.10. WQIs and BIs: An Overview 239	
References 241	
14. Indices of Biological Integrity or the Multi-metric Indices 249	16. Water-Quality Indices: Looking Back, Looking Ahead 353
14.1. Introduction 250	16.1. Introduction 353
14.2. The First IBI (KARR, 1981) 251	16.2. The Best WQI? 354
14.3. The Driver—Pressure—Stress—Impact—Response (DPSIR) Paradigm and The IBI 254	16.3. The Path Ahead 355
14.4. Illustrative Examples of IBI Development 262	16.4. The Last Word 355
14.5. Overview of IBIs Based on Different Taxa 288	References 356
14.6. IBIs for Different Aquatic Systems 301	
14.7. Inter-IBI Comparison 304	Index 357

III

LOOKING BACK, LOOKING AHEAD

16. Water-Quality Indices: Looking Back, Looking Ahead 353
16.1. Introduction 353
16.2. The Best WQI? 354
16.3. The Path Ahead 355
16.4. The Last Word 355
References 356