

CONTENTS

Foreword: Robert Paine xv

Preface xxi

List of Contributors xxiii

1 | WHY A HISTORY OF ECOLOGY? AN INTRODUCTION 1

Beatrix E. Beisner and Kim Cuddington

References 6

Part I POPULATION ECOLOGY

2 | UNSTRUCTURED MODELS IN ECOLOGY: PAST, PRESENT, AND FUTURE 9

Alan Hastings

- 2.1 Introduction 9
- 2.2 The Basic (Deterministic) Unstructured Models 11
- 2.3 Single Species 12
 - 2.3.1 Continuous Time 12
 - 2.3.2 Discrete Time 14
- 2.4 Two Species 16
 - 2.4.1 Continuous Time Exploiter-Victim Models 17
 - 2.4.2 Nicholson-Bailey Discrete Time Models 19
 - 2.4.3 SIR Epidemiological Models 21
 - 2.4.4 Competition 23
- 2.5 More Than Two Species 24
- 2.6 Time Series and Model Fitting 25
- 2.7 The Future of Unstructured Models 26

Acknowledgements 27

References 27

3 | UNSTRUCTURED POPULATION MODELS: DO POPULATION-LEVEL ASSUMPTIONS YIELD GENERAL THEORY? 31

André M. De Roos and Lennart Persson

3.1	Introduction	31
3.2	Core Theory or Limiting Case?	35
3.3	Deriving General Population Models: Starting with the Individual	37
3.4	Three Case Studies	40
3.4.1	Consumer-Resource Interactions	40
3.4.2	Tritrophic Food Chain	43
3.4.3	Cannibalism	45
3.4.4	Overall Conclusions	48
3.5	An Appropriate Modelling Framework: Physiologically Structured Population Models	50
3.6	On Testability	52
3.7	Discussion and Concluding Remarks	53
	Acknowledgements	58
	References	58

4 | THE “STRUCTURE” OF POPULATION ECOLOGY: PHILOSOPHICAL REFLECTIONS ON UNSTRUCTURED AND STRUCTURED MODELS 63

Jay Odenbaugh

4.1	Introduction	63
4.2	Models, Models, and More Models	64
4.3	Revisiting Modelling Trade-Offs	68
4.4	Generality?	70
4.5	Reductionism Redux	72
4.6	Structural Pluralism	74
4.7	Conclusion	76
	Acknowledgements	76
	References	76

Part II EPIDEMIOLOGICAL ECOLOGY

5 | THE LAW OF MASS-ACTION IN EPIDEMIOLOGY: A HISTORICAL PERSPECTIVE 81

Hans Heesterbeek

- 5.1 Introduction 81
- 5.2 Cato Maximilian Guldberg and Peter Waage 82
- 5.3 William Heaton Hamer 84
- 5.4 Ronald Ross and Anderson McKendrick 91
- 5.5 Herbert Edward Soper 95
- 5.6 A Science Taking Flight 101
- Acknowledgements 103
- References 103

6 | EXTENSIONS TO MASS-ACTION MIXING 107

Matt J. Keeling

- 6.1 Introduction 107
- 6.2 Functional Forms 109
- 6.3 Metapopulation Models 111
- 6.4 Cellular Automata 117
- 6.5 Network Models 120
- 6.6 Analytical Approximations: Power-Law Exponents 124
- 6.7 Analytical Approximations: Pair-Wise Models 126
- 6.8 Analytical Approximations: Moment Closure 133
- 6.9 Conclusions 136
- References 138

7 | MASS-ACTION AND SYSTEM ANALYSIS OF INFECTION TRANSMISSION 143

James S. Koopman

- 7.1 Introduction 143
- 7.2 Model Forms as Paradigms for Theory Change 146
- 7.3 Robustness Assessment 151
- 7.4 Advancing a Science of Infection Transmission System Analysis 152
- References 154

Part III COMMUNITY ECOLOGY

8 | COMMUNITY DIVERSITY AND STABILITY: CHANGING PERSPECTIVES AND CHANGING DEFINITIONS 159

Anthony R. Ives

- 8.1 Introduction 159
- 8.2 History 160
- 8.3 Multiple Types of Stability in a Model Ecosystem 162
 - 8.3.1 The 1970s and 1980s 164
 - 8.3.2 The 1950s and 1960s 167
 - 8.3.3 The 1990s 169
 - 8.3.4 Summary 170
- 8.4 Testing Relationships Between Diversity and Stability 171
 - 8.4.1 The 1950s and 1960s 171
 - 8.4.2 The 1970s and 1980s 173
 - 8.4.3 The 1990s 174
 - 8.4.4 Summary 175
- 8.5 Suggestions for Specific “Tests” 175
 - Q1. What Is the Most Appropriate Measure of Diversity? 176
 - Q2. How Strong Are Species Interactions, and Are They Linear and Additive? 176
 - Q3. What Dictates the Structure of Communities? 177
- 8.6 Summary 178
- Acknowledgements 179
- References 179

9 | PERSPECTIVES ON DIVERSITY, STRUCTURE, AND STABILITY 183

Kevin S. McCann

- 9.1 Introduction 183
- 9.2 A Brief History of Diversity and Stability 184
 - 9.2.1 The Intuitive Years 184
 - 9.2.2 The Limits to Diversity 186
 - 9.2.3 Some Current and Future Considerations: Food Webs Across Space and Time 193
- References 197

10 | DIVERSITY AND STABILITY: THEORIES, MODELS, AND DATA 201*David Castle*

- 10.1 Introduction 201
- 10.2 Why Care About Theory Change? 202
- 10.3 Knowledge in Ecology 204
- 10.4 Theory Change in Community Ecology 206
- 10.5 Theory Change, Abated 208
- References 209

Part IV HISTORICAL REFLECTION**11 | ECOLOGY'S LEGACY FROM ROBERT MACARTHUR 213***Eric R. Pianka and Henry S. Horn*

- 11.1 Introduction 213
- 11.2 The Legacy 214
- 11.3 “Population Biology” of MacArthur Citations 217
- 11.4 Eric’s Reflections 220
- 11.5 Henry’s Reverie 223
- 11.6 Concluding Remarks 226
- Acknowledgements 228
- References 228

Part V EVOLUTIONARY ECOLOGY**12 | ON THE INTEGRATION OF COMMUNITY ECOLOGY AND EVOLUTIONARY BIOLOGY: HISTORICAL PERSPECTIVES AND CURRENT PROSPECTS 235***Robert D. Holt*

- 12.1 Introduction 235
- 12.2 Background Reflections 236
- 12.3 A Capsule History of the Relationship Between Evolution and Community Ecology 242
- 12.4 What Derailed the Fusion of Evolution and Community Ecology? 250

12.5	Pointers to the Future	253
12.5.1	Evolution and Ecology at Commensurate Timescales	256
12.5.2	Final Thoughts on the Interplay of Ecology and Evolution	260
12.6	Conclusions	263
	Acknowledgements	264
	References	264

13 | MODELLING THE ECOLOGICAL CONTEXT OF EVOLUTIONARY CHANGE: DÉJÀ VU OR SOMETHING NEW? 273

Troy Day

13.1	Introduction	273
13.2	Theoretical Ecology	274
13.3	Theoretical Evolutionary Biology	277
13.3.1	Classical Population Genetics	277
13.3.2	Optimization and Game Theory	280
13.4	Theoretical Evolutionary Ecology	281
13.4.1	Single-Locus Theory	282
13.4.2	Quantitative-Genetic Theory	284
13.4.3	Game Theory	289
13.4.4	Adaptive Dynamics	297
13.5	Where Do We Stand? Where Do We Go? Is Anything New?	302
13.5.1	Future Empirical Directions	302
13.5.2	Future Theoretical Directions	303
13.5.3	Conclusions: Déjà Vu or Something New?	305
	References	306

14 | THE ELUSIVE SYNTHESIS 311

Kim Sterelny

14.1	Source and Consequence Laws	311
14.2	The Limits of Equilibrium	314
14.2.1	The Grain Problem	315
14.2.2	Organisms Do Not Merely Experience Environments, They Change Them	316

14.2.3 Ecological Agents	317
14.3 The Grain Problem and Its Macroecological Solution	318
14.4 Niche Construction and Its Consequences	320
14.5 The Emergent Property Hypothesis	323
References	328

Part VI ECOSYSTEM ECOLOGY

15 | THE LOSS OF NARRATIVE 333

T.F.H. Allen, A.J. Zellmer, and C.J. Wuennenberg

15.1 Introduction	333
15.1.1 The History of the Problem	338
15.1.2 A Postmodern View of Ecology	339
15.1.3 Analogy in Ecology	341
15.2 The Paradigm of Narrative	342
15.2.1 A History of the Ecosystem Paradigm	342
15.2.2 Scientific Paradigms Versus Humanitarian Commonplaces	343
15.2.3 Paradigms, Complexity, and Narratives	346
15.3 Higher Dimensionality in Narratives	350
15.3.1 Essences, Models, and Observables	350
15.3.2 Dimensions of Narratives	351
15.3.3 The Observer-Observation Complex	352
15.3.4 Dimensionality in Science	354
15.4 The Complementarity of Narratives	356
15.5 Why It Matters in Applied Systems	360
15.6 The Postmodern Paradigm in Ecology	363
Acknowledgements	368
References	368

16 | ECOLOGICAL MANAGEMENT: CONTROL, UNCERTAINTY, AND UNDERSTANDING 371

Garry D. Peterson

16.1 Introduction	371
-------------------	-----

16.2	A History of Ecological Management	372
16.2.1	Forestry	372
16.2.2	Fisheries	373
16.2.3	Ecosystems and Ecological Management	375
16.3	A Theoretical Framework for Ecological Management	377
16.3.1	Uncertainty	377
16.3.2	Controllability	379
16.4	Current Approaches to Ecological Management	381
16.4.1	Adaptive Management	382
16.4.2	Resilience Building	383
16.4.3	Scenario Planning	384
16.5	Frontiers of Ecological Management	385
16.5.1	An Approach: Resilience Analysis	386
16.6	Conclusions	390
	Acknowledgements	391
	References	391

17 | IS ECOSYSTEM MANAGEMENT A POSTMODERN SCIENCE? 397

Kevin de Laplante

17.1	Introduction	397
17.2	Ecosystem Ecology: Conceptual and Historical Background	398
17.2.1	Ambiguities of the Ecosystem Concept	398
17.2.2	The Classical Tradition of Ecosystem Ecology	400
17.2.3	The Rise, Fall, and Reemergence of the Classical Tradition	402
17.3	<i>Post-normal</i> Science	406
17.3.1	Origins of the Term	406
17.3.2	Does <i>Post-normal</i> Imply <i>Postmodern</i> ?	408
17.4	The “Paradigm of Narrative”: Defending the Holling Figure-Eight	409
17.5	Theory Change in Ecosystem Ecology: Gradual Development or Paradigm Shift?	412
17.6	Conclusion	413

Acknowledgements 414

References 414

Part VII CONCLUSION

18 | KUHNIAN PARADIGMS LOST: EMBRACING THE PLURALISM OF ECOLOGICAL THEORY 419

Kim Cuddington and Beatrix E. Beisner

18.1 Kuhn and Beyond 420

18.2 Paradigm Shifts in Ecological Theory? 421

18.3 Concluding Remarks 426

References 427

Index 429