

Contents

Preface	xi
Dedications and Acknowledgements	xv
1 Introduction	1
2 Comments on Classical Mechanics	7
2.1 Force	12
2.2 Energy Sources	18
3 Conversion and Storage	21
3.1 Availability of Solar Energy	25
3.2 Conversion Processes	27
3.2.1 Photovoltaic Conversion Process	27
3.2.2 Thermoelectric Effects: Seebeck and Peltier	28
3.2.3 Multiple P-N Cell Structure Shown with Heat	30
3.2.4 Early Examples of Thermoelectric Generators	30
3.2.5 Thermionic Converter	32
3.2.6 Thermogalvanic Conversion	32
3.3 Storage Processes	34
3.3.1 Redox Full-Flow Electrolyte Systems	34
3.3.2 Full Flow and Static Electrolyte System Comparisons	35
4 Practical Purposes of Energy Storage	41
4.1 The Need for Storage	41
4.2 The Need for Secondary Energy Systems	44
4.2.1 Comparisons and Background Information	45

4.3	Sizing Power Requirements of Familiar Activities	47
4.3.1	Examples of Directly Available Human Manual Power Mechanically Unaided	49
4.3.1.1	Arm Throwing	49
4.3.1.2	Vehicle Propulsion by Human Powered Leg Muscles	49
4.3.1.3	Mechanical Storage: Archer's Bow and Arrow	51
4.4	On-the-road Vehicles	52
4.4.1	Land Vehicle Propulsion Requirements Summary	53
4.5	Rocket Propulsion Energy Needs Comparison	54
5	Competing Storage Methods	55
5.1	Problems with Batteries	56
5.2	Hydrocarbon Fuel: Energy Density Data	59
5.3	Electrochemical Cells	62
5.4	Metal-Halogen and Half-Redox Couples	63
5.5	Full Redox Couples	68
5.6	Possible Applications	71
6	The Concentration Cell	75
6.1	Colligative Properties of Matter	76
6.2	Electrochemical Application of Colligative Properties	77
6.2.1	Compressed Gas	79
6.2.2	Osmosis	81
6.2.3	Electrostatic Capacitor	82
6.2.4	Concentration Cells: CIR (Common Ion Redox)	83
6.3	Further Discussions on Fundamental Issues	89
6.4	Adsorption and Diffusion Rate Balance	94
6.5	Storage by Adsorption and Solids Precipitation	97
6.6	Some Interesting Aspects of Concentration Cells	100
6.7	Concentration Cell Storage Mechanisms that Employ Sulfur	104
6.8	Species Balance	106
6.9	Electrode Surface Potentials	107

6.10	Further Examination of Concentration Ratios	108
6.11	Empirical Results with Small Laboratory Cells	111
6.12	Iron/Iron Concentration Cell Properties	114
6.13	The Mechanisms of Energy Storage Cells	115
6.14	Operational Models of Sulfide Based Cells	121
6.15	Storage Solely in Bulk Electrolyte	123
6.16	More on Storage of Reagents in Adsorbed State	126
6.17	Energy Density	130
6.18	Observations Regarding Electrical Behavior	130
6.19	Concluding Comments	133
6.20	Typical Performance Characteristics	133
6.21	Sulfide/Sulfur Half Cell Balance	134
6.22	General Cell Attributes	135
6.23	Electrolyte Information	136
6.24	Concentration Cell Mechanism and Associated Mathematics	138
6.25	Calculated Performance Data	140
6.26	Another S/S ⁻² Cell Balance Analysis Method	143
6.27	A Different Example of a Concentration Cell, Fe ⁺² /Fe ⁺³	145
6.28	Performance Calculations Based on Nernst Potentials	146
6.28.1	Constant Current Discharge	147
6.28.2	Constant Power Discharge	148
6.29	Empirical Data	150
7	Thermodynamics of Concentration Cells	153
7.1	Thermodynamic Background	153
7.2	The CIR Cell	156
8	Polysulfide – Diffusion Analysis	165
8.1	Polarization Voltages and Thermodynamics	166
8.2	Diffusion and Transport Processes at the (–) Electrode Surface	168
8.3	Electrode Surface Properties, Holes, and Pores	169
8.4	Electric (Ionic) Current Density Estimates	174
8.5	Diffusion and Supply of Reagents	176

viii CONTENTS

8.6	Cell Dynamics	177
8.6.1	Electrode Processes Analyses	177
8.6.2	Polymeric Number Change	178
8.7	Further Analysis of Electrode Behavior	190
8.7.1	Flat Electrode with Some Storage Properties	190
8.8	Assessing the Values of Reagent Concentrations	198
8.9	Solving the Differential Equations	199
8.10	Cell and Negative Electrode Performance Analysis	211
8.11	General Comments	218
9	Design Considerations	219
9.1	Examination of Diffusion and Reaction Rates and Cell Design	219
9.2	Electrodes	220
9.3	Physical Spacing in Cell Designs	221
9.3.1	Electrode Structures	221
9.4	Carbon-Polymer Composite Electrodes	225
9.4.1	Particle Shapes and Sizes	228
9.4.2	Metal to Carbon Resistance	229
9.4.3	Cell Spacing	229
9.5	Resistance Measurements in Test Cells	231
9.6	Electrolytes and Membranes	233
9.7	Energy and Power Density Compromises	234
9.8	Overcharging Effects on Cells	237
9.9	Imbalance Considerations	238
10	Calculated Cell Performance Data	239
10.1	Electrical Performance Modeling	239
11	Single Cell Empirical Data	253
11.1	Design and Construction of Cells and the Materials Employed	253
11.2	Experimental Data	257
12	Conclusion: Problems and Solutions	261
12.1	Pros and Cons of Concentration Cells	262
12.2	Future Performance and Limitations	263

Appendix 1: A History of Batteries	265
A1.1 A History of the Battery	266
A1.2 The Electric Car and the Power Source Search	268
A1.3 The Initial Survey	270
A1.4 Review of a Research Path for a Long-life, High ED Battery	271
Appendix 2: Aids and Supplemental Material	283
A2.1 Properties of Homogeneous Membranes	283
A2.1.1 Diffusion Tests	284
A2.2 The van der Waals Equation and its Relevance to Concentration Cells	285
A2.3 Derivation of Electrolyte Interconnectivity Losses	286
A2.4 Efficiency Calculations	290
A2.5 Specific Resistivity and Specific Gravity of Some Reagents	294
Bibliography	297
Index	301