

Contents

LIST OF EXAMPLES	XII
NOTATION	XV
1 INTRODUCTION TO GROUNDWATER GEOCHEMISTRY	1
1.1 Groundwater as drinking water	1
1.1.1 Standards for drinking water	1
1.2 Units of analysis	3
1.3 Groundwater quality	7
1.4 Sampling of groundwater	10
1.4.1 Depth integrated or depth specific sampling	10
1.4.2 Procedures for sampling of groundwater	12
1.5 Chemical analysis of groundwater	15
1.5.1 Field analyses and sample conservation	15
1.5.2 Accuracy of chemical analysis	17
Problems	20
References	21
2 FROM RAINWATER TO GROUNDWATER	23
2.1 The hydrological cycle	23
2.2 The composition of rainwater	26
2.2.1 Sources and transport of atmospheric pollutants	31
2.3 Stable isotopes in rain	31
2.3.1 Isotopic ratios and the δ notation	32
2.3.2 The Rayleigh process	33
2.3.3 The isotopic composition of rain	37
2.4 Dry deposition and evapotranspiration	41
2.5 Mass balances and ecosystem dynamics	46
2.5.1 Water quality profiles in the unsaturated soil	49
2.6 Overall controls on water quality	51
Problems	58
References	59
3 FLOW AND TRANSPORT	63
3.1 Flow in the unsaturated zone	63
3.2 Flow in the saturated zone	64

3.2.1 Darcy's law	64
3.2.2 Flowlines in the subsoil	67
3.2.3 Effects of non-homogeneity	70
3.2.4 The aquifer as a chemical reactor	71
3.3 Dating of groundwater	72
3.4 Retardation	75
3.4.1 The retardation equation	76
3.4.2 Indifferent and broadening fronts	79
3.4.3 Sharpening fronts	82
3.4.4 Solid and solute concentrations	84
3.5 Diffusion	86
3.5.1 Diffusion coefficients	87
3.5.2 Diffusion as a random process	89
3.5.3 Diffusive transport	93
3.5.4 Isotope diffusion	96
3.6 Dispersion	99
3.6.1 Column breakthrough curves	102
3.6.2 Dispersion coefficients and dispersivity	105
3.6.3 Macrodispersivity	107
Problems	113
References	115
 4 MINERALS AND WATER	119
4.1 Equilibria and the solubility of minerals	119
4.2 Corrections for solubility calculations	123
4.2.1 Concentration and activity	123
4.2.2 Aqueous complexes	127
4.2.3 Combined complexes and activity corrections	128
4.2.4 Calculation of saturation states	131
4.3 Mass action constants and thermodynamics	132
4.3.1 The calculation of mass action constants	132
4.3.2 Calculation of mass action constants at different temperature	133
4.4 Equilibrium calculations with PHREEQC	135
4.4.1 Speciation calculations using PHREEQC	135
4.4.2 The PHREEQC database	137
4.4.3 Mineral equilibration	141
4.5 Solid solutions	142
4.5.1 Basic theory	142
4.5.2 The fractionation factor for solid solutions	148
4.5.3 Kinetic effects on the fractionation factor	149
4.6 Kinetics of geochemical processes	152
4.6.1 Kinetics and equilibrium	152
4.6.2 Chemical reactions and rates	153
4.6.3 Temperature dependency of reaction rates	159
4.6.4 Mechanisms of dissolution and crystallization	160
4.6.5 Rate laws for mineral dissolution and precipitation	162
Problems	169
References	171

5 CARBONATES AND CARBON DIOXIDE	175
5.1 Carbonate minerals	176
5.2 Dissolved carbonate equilibria	178
5.2.1 The carbonic acid system	179
5.2.2 Determining the carbonate speciation in groundwater	183
5.3 Carbon dioxide in soils	186
5.4 Calcite solubility and P_{CO_2}	191
5.4.1 Calcite dissolution in systems open and closed for CO_2 gas	193
5.4.2 Two field examples	195
5.5 Carbonate rock aquifers	197
5.5.1 Dolomite and dedolomitization	201
5.5.2 Pleistocene carbonate aquifers	205
5.6 Kinetics of carbonate reactions	210
5.6.1 Dissolution	210
5.6.2 Precipitation	217
5.7 Carbon isotopes	218
5.7.1 Carbon-13 trends in aquifers	221
5.7.2 ^{14}C and groundwater age	226
5.7.3 Retardation by sorption and stagnant zone diffusion	228
Problems	232
References	236
6 ION EXCHANGE	241
6.1 Cation exchange at the salt/fresh water interface	242
6.2 Adsorbents in soils and aquifers	247
6.2.1 Clay minerals	248
6.3 Exchange equations	251
6.3.1 Values for exchange coefficients	254
6.3.2 Calculation of exchanger composition	255
6.3.3 Calculation of exchanger composition with PHREEQC	257
6.3.4 Determination of exchangeable cations	260
6.4 Chromatography of cation exchange	262
6.4.1 Field examples of freshening	263
6.4.2 Salinity effects on cation exchange	268
6.4.3 Quality patterns with salinization	271
6.4.4 Fronts and chromatographic sequences	272
6.4.5 Modeling chromatographic sequences with PHREEQC	275
6.5 Physical non-equilibrium	283
6.5.1 Modeling stagnant zones	285
6.6 The Gouy-Chapman theory of the double layer	288
6.6.1 Numerical integration of the double layer equations	293
6.6.2 Practical aspects of double layer theory	296
6.7 Irrigation water quality	299
Problems	303
References	306
7 SORPTION OF TRACE METALS	311
7.1 The origin and occurrence of heavy metals in groundwater	311
7.2 Sorption isotherms and distribution coefficients	315

7.2.1	Distribution coefficients from ion exchange	318
7.3	Variable charge surfaces	322
7.3.1	Titration curves with suspended oxide particles	322
7.3.2	Surface charge and point of zero charge, <i>PZC</i>	324
7.3.3	Sorption edges	328
7.3.4	Sorption, absorption, and coprecipitation	333
7.4	Surface complexation	334
7.4.1	Surface complexation models	338
7.4.2	The ferrihydrite (Fe(OH)_3) database	340
7.4.3	Diffuse double layer concentrations in surface complexation models	343
7.5	Complexation to humic acids	344
7.5.1	The ion association model	346
7.5.2	Tipping and Hurley's discrete site model "WHAM"	348
7.5.3	Distribution models	354
7.5.4	Humic acids as carriers of trace elements	356
7.6	Kinetics of surface complexation	358
7.6.1	Extrapolation of adsorption kinetics for other metal ions	363
7.7	Field applications	363
Problems		367
References		369
8	SILICATE WEATHERING	375
8.1	Weathering processes	375
8.2	The stability of weathering products	380
8.3	Incongruent dissolution of primary silicates	383
8.4	The mass balance approach to weathering	389
8.5	Kinetics of silicate weathering	395
8.6	Field weathering rates	400
8.7	Acid groundwater	404
8.7.1	Buffering processes in aquifers	405
Problems		410
References		412
9	REDOX PROCESSES	415
9.1	Basic theory	415
9.1.1	The significance of redox measurements	420
9.1.2	Redox reactions and the <i>pe</i> concept	422
9.2	Redox diagrams	423
9.2.1	Stability of water	424
9.2.2	The stability of dissolved species and gases: Arsenic	425
9.2.3	The stability of minerals in redox diagrams	432
9.3	Sequences of redox reactions and redox zoning	438
9.3.1	Decomposition of organic matter	442
9.4	Oxygen consumption	446
9.4.1	Pyrite oxidation	450
9.4.2	Kinetics of pyrite oxidation	450
9.4.3	Oxygen transport and pyrite oxidation	453
9.5	Nitrate reduction	458
9.5.1	Nitrate reduction by organic matter oxidation	459
9.5.2	Nitrate reduction by pyrite and ferrous iron	462

9.6 Iron reduction and sources of iron in groundwater	465
9.6.1 Iron in aquifer sediments	465
9.6.2 Reductive dissolution of iron oxides	466
9.7 Sulfate reduction and iron sulfide formation	472
9.7.1 The formation of iron sulfides	476
9.8 The formation of methane	477
Problems	479
References	480
10 POLLUTION BY ORGANIC CHEMICALS	489
10.1 Gas-water exchange	489
10.1.1 Evaporation of a pure organic liquid	494
10.2 Transport of pure organic liquids through soil	496
10.3 Sorption of organic chemicals	499
10.3.1 Sorption of charged organic molecules	504
10.3.2 Sorption in stagnant zones	506
10.3.3 Release from stagnant zones and blobs	510
10.4 Transformation reactions of organic chemicals	516
10.4.1 Monod biotransformation kinetics	518
10.5 Kinetic complexation of heavy metals on organics	529
Problems	535
References	537
11 NUMERICAL MODELING	541
11.1 Numerical modeling of transport	543
11.1.1 Only diffusion	543
11.1.2 Advection and diffusion/dispersion	550
11.1.3 Non-linear reactions	558
11.2 Examples of hydrogeochemical transport modeling	560
11.2.1 Tritium-Helium age dating	561
11.2.2 Toluene degradation in an aquifer	565
11.2.3 Remediation of a BTEX polluted site	568
11.2.4 Acid drainage from a Uranium mine	570
11.2.5 In-situ iron removal from groundwater	579
11.2.6 Arsenic in Bangladesh groundwater	585
11.2.7 Fractionation of isotopes	590
References	595
APPENDIX A: HYDROGEOCHEMICAL MODELING WITH PHREEQC	599
APPENDIX B: ANSWERS TO PROBLEMS	617
INDEX	635