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The Foundations of Biochemistry

1.1 Cellular Foundations 2 ;)if .matter. Whag are these distinguishing features of
ving organisms?
1.2 Chemical Foundations 11 gorg

A high degree of chemical complexity and
microscopic organization. Thousands of different
molecules make up a cell’s intricate internal struc-
tures (Fig. 1-1a). These include very long polymers,
each with its characteristic sequence of subunits, its
unique three-dimensional structure, and its highly
specific selection of binding partners in the cell.

1.3  Physical Foundations 20
1.4 Genetic Foundations 29
1.5 Evolutionary Foundations 32

as a cataclysmic explosion of hot, energy-rich sub-

atomic particles. Within seconds, the simplest ele-
ments (hydrogen and helium) were formed. As the
universe expanded and cooled, material condensed
under the influence of gravity to form stars. Some stars
became enormous and then exploded as supernovae,
releasing the energy needed to fuse simpler atomic
nuclei into the more complex elements. Atoms and mol-
ecules formed swirling masses of dust particles, and
their accumulation led eventually to the formation of
rocks, planetoids, and planets. Thus were produced,
over billions of years, Earth itself and the chemical ele-
ments found on Earth today. About four billion years
ago, life arose—simple microorganisms with the ability
to extract energy from chemical compounds and, later,
from sunlight, which they used to make a vast array of
more complex biomolecules from the simple elements
and compounds on the Earth’s surface. We and all other
living organisms are made of stardust.

Biochemistry asks how the remarkable properties
of living organisms arise from the thousands of different
biomolecules. When these molecules are isolated and
examined individually, they conform to all the physical
and chemical laws that describe the behavior of inani-
mate matter—as do all the processes occurring in living
organisms. The study of biochemistry shows how the
collections of inanimate molecules that constitute living
organisms interact to maintain and perpetuate life ani-
mated solely by the physical and chemical laws that
govern the nonliving universe.

Yet organisms possess extraordinary attributes,
Properties that distinguish them from other collections

A bout fourteen billion years ago, the universe arose

Systems for extracting, transforming, and using
energy from the environment (Fig. 1-1b), enabling
organisms to build and maintain their intricate
structures and to do mechanical, chemical, osmotic,
and electrical work. This counteracts the tendency of
all matter to decay toward a more disordered state, to
come to equilibrium with its surroundings.

Defined functions for each of an organism’s
components and regulated interactions among
them. This is true not only of macroscopic struc-
tures, such as leaves and stems or hearts and lungs,
but also of microscopic intracellular structures and
individual chemical compounds. The interplay among
the chemical components of a living organism is
dynamic; changes in one component cause coordi-
nating or compensating changes in another, with the
whole ensemble displaying a character beyond that
of its individual parts. The collection of molecules
carries out a program, the end result of which is
reproduction of the program and self-perpetuation of
that collection of molecules—in short, life.

Mechanisms for sensing and responding to
alterations in their surroundings. Organisms
constantly adjust to these changes by adapting
their internal chemistry or their location in the
environment.

A capacity for precise self-replication and
self-assembly (Fig. 1-1c). A single bacterial cell
placed in a sterile nutrient medium can give rise to
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