

Contents

Preface	ix
Foreword	xi
List of Contributors	xiii

1. Current Bioenergy Researches: Strengths and Future Challenges 1

NAVEEN KUMAR MEKALA, RAVICHANDRA POTUMARTHI,
RAMA RAJU BAADHE, VIJAI K. GUPTA

Introduction	1
Biopellets	3
Bioethanol	3
Biodiesel	9
Biogas	14
Conclusion	17
References	18

2. Bioenergy Research: An Overview on Technological Developments and Bioresources 23

VIJAI K. GUPTA, RAVICHANDRA POTUMARTHI,
ANTHONIA O'DONOVAN, CHRISTIAN P. KUBICEK,
GAURI DUTT SHARMA, MARIA G. TUOHY

Introduction	23
Current Bioenergy Practices	25
Main Biofuel Technologies and Current Processes	26
Technological Routes for Bioenergy Production	28
Bioenergy Resources and Biofuels Development Program	33
Sustainability	36
Conclusions	41
References	41

3. Use of Agroindustrial Residues for Bioethanol Production 49

LUIZ J. VISIOLI, FABIANE M. STRINGHINI, PAULO R.S. SALBEGO,
DANIEL P. CHIELLE, GABRIELLY V. RIBEIRO, JULIANA M. GASPAROTTO,
BRUNO C. AITA, RODRIGO KLAIC, JÉSSICA M. MOSCON,
MARCIO A. MAZUTTI

Introduction	49
Raw Material	50
Sugar Production and Fermentation	52
Concluding Remarks	55
References	55

4. Recent Advancements in Pretreatment Technologies of Biomass to Produce Bioenergy 57

IRMENE ORTÍZ, RODOLFO QUINTERO

Lignocelulosic Biomass	57
Pretreatment of Lignocelulosic Biomass for Biofuels Production	58
Types of Pretreatments	58
Trends in Pretreatments	62
Pretreatment Modeling	65
Environmental and Economical Aspects	65
Concluding Remarks	66
References	66

5. Biofuels and Bioproducts Produced through Microbial Conversion of Biomass 71

TRENT CHUNZHONG YANG, JYOTHI KUMARAN,
SAMUEL AMARTEY, MIRANDA MAKI, XIANGLING LI,
FAN LU, WENSHENG QIN

Lignocellulosic Biomass and its Pretreatment	72
Commonly used Microorganisms for Biological Pretreatment	73
Strategies of Using Microbial Pretreatment to Enhance Sugar Release for Biofuel and Bioproduct Production	79
References	87

6. Databases for Bioenergy-Related Enzymes 95

YANBIN YIN

Plant Biomass	95
Bioenergy-Related Enzymes and Regulation	96
Databases and Web Servers	98
Future Perspectives	103
References	103

7. Isobutanol Production from Bioenergy Crops 109

THADDEUS CHUKWUEMKA EZEJI, NASIB QURESHI,
VICTOR UJOR

Background/Introduction	109
Keto Acid Pathways for Higher Alcohol Production	110
Biochemistry of Isobutanol Fermentation	112

Metabolic Engineering of Microorganisms for Isobutanol Production	113
Feasibility of Using Bioenergy Crops as Sustainable Feedstocks for Isobutanol Production	114
Technologies that Have Been Developed for Simultaneous Butanol Fermentation and Recovery	115
Conclusion and Future Perspective	116
References	116

8. Lipase-Catalyzed Biodiesel Production: Technical Challenges 119

RAMA RAJU BAADHE, RAVICHANDRA POTUMARTHI,
VIJAI K. GUPTA

Introduction	119
Chemistry of Biodiesel	120
Transesterification	120
Disadvantages of Chemical Transesterification	120
Advantages of Using Lipases in Biodiesel Production	121
Historical Background of Lipase	121
Lipase-Catalyzed Transesterification Done in two Approaches	121
Advantages of Immobilized Lipase	122
Technical Challenges	123
Feedstock	123
Choice of Enzyme	124
Molar Ratio (Alcohol/Oil)	124
Temperature	124
Water Content	126
Acyl Acceptors	126
Solvents	126
Reactor System	126
Conclusions	127
References	127

9. Bioelectrochemistry of Microbial Fuel Cells and their Potential Applications in Bioenergy 131

MINGHUA ZHOU, JIE YANG, HONGYU WANG, TAO JIN,
DANIEL J. HASSETT, TINGYUE GU

Introduction	132
Bioelectrochemistry of MFC	132
Biofilm Electrochemistry for Enhanced MFC Performance: A Molecular Biology Perspective	139
MFCs for Wastewater Treatment with Concomitant Electricity Production	143
Summary and Perspectives	147
References	147

10. Second-Generation Biofuel from High-Efficiency Algal-Derived Biocrude 153

RHYKKA CONNELLY

Introduction	153
Microalgal Biofuel History	154

Microalgae Biomass/Biofuel Production—Cultivation	155
Phototrophic Microalgae	155
Heterotrophic Microalgae	155
Nutrients	156
Contamination	156
Mixing	156
Culture Techniques	156
Open-Pond Culture	157
Photobioreactors	157
Processing Microalgal Biomass for Biofuels	158
Microalgal Biomass to Biofuels	158
Biodiesel	158
Production of Biodiesel from Microalgae	159
Comparison of Biodiesel to Petrodiesel	160
Bioethanol	161
Bioethanol Production Process	161
Biomethane	164
Biohydrogen	165
Biocrude	166
Properties of Subcritical Water	166
Hydrothermal Catalytic Liquefaction	167
HTL Summary and Outlook	167
Conclusions	167
References	168

11. Microalgae: The Tiny Microbes with a Big Impact 171

SHOVON MANDAL, NIRUPAMA MALLICK

Renewable Energy	171
Petroleum Fuel Scenario in India	172
Biodiesel	172
Microalgae: Viable Feedstocks for Biodiesel	173
Selection of Potent Strains	173
Genetic Engineering Approach	175
Microalgal Biodiesel Production	177
Fatty Acid Methyl Esters and Fuel Properties	179
Waste Utilization for Biodiesel Production: A Case Study with <i>Scenedesmus Obliquus</i> in a Recirculatory Aquaculture System	179
Concluding Remarks	181
References	181

12. Biobased Fats (Lipids) and Oils from Biomass as a Source of Bioenergy 185

CIARÁN JOHN FORDE, MARIE MEANEY, JOHN BOSCO CARRIGAN,
CLIVE MILLS, SUSAN BOLAND, ALAN HERNON

Introduction	185
Sources of Biolipids	186
Supply and Projected/Current Volume	190
Energy Balance	192
Processing of Biolipids and Properties of Biolipid-Derived Biofuels	193
Properties of Pure Plant Oil	195

Properties of Biodiesel	196
Biomass to Liquid Fuels (Bio-oil)	197
Conclusion	198
References	198

13. Use of Volatile Solids from Biomass for Energy Production 203

W.J. OOSTERKAMP

Introduction	204
Biodegradability	204
Addition of Macro- and Micronutrients	204
Addition of Microbes	205
Addition of Enzymes	206
Pretreatments	207
Longer Retention Times	207
Energy Crops	207
Food Processing Residues	207
Crop Residues	209
Spent Bedding	209
Kitchen and Garden Waste	209
Aquatic Weeds	209
Digestion Systems	211
Increase in Solids Content in Wet Digesters	212
Loading and Unloading of Digesters	212
Treatment of Digestate in Wet Digesters	212
Use of Methane	213
Chemical Conversion of Volatile Solids	213
Thermal Conversion of Volatile Solids	214
Discussion	214
Conclusions	214
References	215

14. Biorefinery Systems: An Overview 219

MARIA GAVRILESCU

Introduction—Biorefinery, Concepts and Emerging Opportunities for Sustainable Economy	219
Short History of Biorefineries and Bio-Based Products	221
Biomass Feedstock	221
Structure of Biorefinery Concept	224
Biorefinery Platforms	227
Biorefinery Eco-Efficiency	231
Concluding Remarks and Perspectives	236
References	239

15. Catalytic Thermochemical Processes for Biomass Conversion to Biofuels and Chemicals 243

LIN MEI WU, CHUN HUI ZHOU, DONG SHEN TONG, WEI HUA YU

Introduction	243
Pyrolysis of Biomass	244
Gasification of Biomass	247

Hydrothermal Liquefaction of Biomass	248
Conclusion	251
References	251

16. Applications of Heterogeneous Catalysts in the Production of Biodiesel by Esterification and Transesterification 255

LUIZ P. RAMOS, CLAUDINEY S. CORDEIRO, MARIA APARECIDA F. CESAR-OLIVEIRA, FERNANDO WYPYCH, SHIRLEY NAKAGAKI

Introduction	255
Heteropolyacids	257
Zeolites	258
Clay Minerals	260
Layered Materials	265
Polymeric Catalysts	269
Concluding Remarks	272
References	272

17. Lignocellulose-Based Chemical Products 277

ED DE JONG, RICHARD J.A. GOSSELINK

Introduction	278
Occurrence and Composition of Lignocellulosic Biomass	278
Cellulose	280
Hemicelluloses	280
Lignin	283
Pretreatment Technologies	286
Pretreatment Technologies Still at a Laboratory/Conceptual Stage	290
Lignocellulosic Biorefineries—Classification	292
C6 and C6/C5 Sugar Platform	295
Lignin Platform	296
Importance of Furans and Aromatics as Building Blocks for Chemicals and Fuels	297
Carbohydrate Dehydration	298
Conversion of Technical Lignins into Monoaromatic Chemicals	305
Conclusions and Further Perspectives	309
References	309

18. Industrial Lignins: Analysis, Properties, and Applications 315

ALEX BERLIN, MIKHAIL BALAKSHIN

The Potential of Technical Lignins as a Renewable Raw Material Feedstock	315
Technical Lignins: Production, Properties, and Analysis	318
Technical Lignins: Traditional and Emerging Applications	332
Conclusions	333
References	333

19. Amino-Based Products from Biomass and Microbial Amino Acid Production 337

K. MADHAVAN NAMPOOTHIRI, VIPIN GOPINATH, M. ANUSREE,
NISHANT GOPALAN, KIRAN S. DHAR

- Amino Acids 337
- Aspartame 341
- Poly(Amino Acid)s 341
- Polyamines 345
- Conclusion and Perspectives 349
- References 349

20. Production of Phytochemicals, Dyes and Pigments as Coproducts in Bioenergy Processes 353

HANSHU DING, FENG XU

- Industrial Phytochemicals 353
- Production of Industrial Phytochemicals 358
- Coproduction of Phytochemicals in Bioenergy Processes 361
- References 363

21. Recent Developments on Cyanobacteria and Green Algae for Biohydrogen Photoproduction and Its Importance in CO₂ Reduction 367

Y. ALLAVERDIYEVA, E.M. ARO, S.N. KOSOUROV

- Introduction 367
- Mechanisms of Hydrogen Photoproduction 368
- Hydrogen Photoproduction by Cyanobacteria 372
- Hydrogen Photoproduction by Green Algae 375
- References 382

22. Engineered Cyanobacteria: Research and Application in Bioenergy 389

GUSTAVO B. LEITE, PATRICK C. HALLENBECK

- Introduction 389
- Engineering Cyanobacteria 392
- Cyanobacteria as a Production System for Biofuels: Current Status 393
- Conclusion and Outlook 403
- References 403

23. Sustainable Farming of Bioenergy Crops 407

ADRIAN MULLER

- Introduction 407
- Criteria for Sustainable Farming and Sustainable Food Systems 409
- What is Sustainable Bioenergy Production? 410
- How Much Bioenergy may be Produced Sustainably? 412

- Conclusions 415
- References 415

24. Bioenergy Technology and Food Industry Waste Valorization for Integrated Production of Polyhydroxyalkanoates 419

VASILIKI KACHRIMANIDOU, NIKOLAOS KOPSAHELIS, COLIN WEBB,
APOSTOLIS A. KOUTINAS

- Introduction 419
- PHA Structure and Properties 420
- PHA Production Integrated in Biorefinery Concepts 421
- Conclusions and Future Perspectives 430
- References 430

25. Advances and Innovations in Biochar Production and Utilization for Improving Environmental Quality 435

CHARLES HYLAND, AJIT K. SARMAH

- Introduction 435
- Properties of Biochar 436
- Utilization of Biochar for Environmental Quality 438
- Postpyrolysis Indirect Application of Biochar 440
- Conclusions, Knowledge Gaps, and Research Needs 443
- References 444

26. Biochar Processing for Sustainable Development in Current and Future Bioenergy Research 447

MARK P. MCHENRY

- Introduction 447
- Theoretical Income Streams 448
- Agricultural Benefits 450
- Economic Analysis 451
- Conclusion 454
- Disclaimers 455
- References 455

27. Development of Thermochemical and Biochemical Technologies for Biorefineries 457

MICHAEL P. GARVER, SHIJIE LIU

- Introduction 457
- Characteristics of Lignocellulosic Biomass 458
- An Overview on Biomass Conversion 461
- Pretreatment—Biomass Size Reduction by Physical or Mechanical Methods 462
- Hydrolysis 476
- Bioconversion—Converting Sugars to Products 477
- Thermochemical Conversion 478
- Conclusion 482
- References 482

Index 489