

Contents

Preface ix

Contributors xi

1. A General Introduction to Biomass Utilization Possibilities

- 1.1 Introduction: Scope of This Introduction 1
- 1.2 A Short History: What Is Biomass? What Is Photosynthesis? 2
- 1.3 Chemistry of Biomass and Biomass Conversion 8
- 1.4 Drawbacks and Limitations of Biofuels 1.0: First-Generation Biofuels 11
- 1.5 Biofuels 2.0: Second-Generation Biomass Conversion Technologies 13
- 1.6 Beyond Biofuels: A Personal Future Perspective 20

2. Biomass Composition and Its Relevance to Biorefining

- 2.1 Introduction 27
- 2.2 Chemistry of Biomass Materials 28
- 2.3 Biomass Types 35
- 2.4 Biorefining Technologies 35
- 2.5 First-Generation Versus Second-Generation Biomass 44
- 2.6 Feedstock Logistics 45
- 2.7 Lignocellulosic Feedstocks 46
- 2.8 Advances in Lignocellulosic Feedstocks 58
- 2.9 Summary 59

3. Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels

- 3.1 Introduction 67
- 3.2 Vegetable Oils 69
- 3.3 Thermal Cracking (Pyrolysis) of Vegetable Oils 74

- 3.4 Transesterification of Vegetable Oils 78
- 3.5 Hydrotreating/Hydrocracking of Vegetable Oils 79
- 3.6 Conclusions and Perspectives 88

4. Heterogeneous Catalysis for Biodiesel Production

- 4.1 Introduction 94
- 4.2 Biodiesel Produced Using Organocatalysts 96
- 4.3 Solid Inorganic Acid Catalysts 101
- 4.4 Basic Solid Catalysts 111
- 4.5 Metal Catalysts 122
- 4.6 Ion-Exchange Resins 122
- 4.7 Ionic Liquids 124
- 4.8 Enzymes 125
- 4.9 Continuous-Flow Biodiesel Production 128
- 4.10 Conclusions 130

5. Catalytic Pyrolysis of Lignocellulosic Biomass

- 5.1 Introduction 137
- 5.2 Pyrolysis Chemistry 142
- 5.3 Catalysts for Upgrading of Pyrolysis Bio-oil 145
- 5.4 Catalytic Pyrolysis over Zeolites and Mesoporous Materials 150
- 5.5 Conclusions 156

6. Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research

- 6.1 Introduction 161
- 6.2 Pathways and Mechanisms of Biomass Pyrolysis 164
- 6.3 Mechanistic Studies of Catalytic Pyrolysis 185
- 6.4 Final Remarks 203

7. The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals

- 7.1 Introduction 217
- 7.2 Pretreatment with Acid Catalysts 224
- 7.3 Pretreatment with Basic Catalysts 229
- 7.4 Self-Catalyzed Pretreatment 233
- 7.5 Combining Chemical Catalysis with Physical Methods 238
- 7.6 Oxidation Catalysts 243
- 7.7 Solid Acid Catalysts 248
- 7.8 Ionic Liquids 249
- 7.9 Summary and Outlook 252

8. Role of Acid Catalysis in the Conversion of Lignocellulosic Biomass to Fuels and Chemicals

- 8.1 Introduction 262
- 8.2 Overview of Acid Catalysis 265
- 8.3 Acid-Catalyzed Cellulose Hydrolysis 267
- 8.4 Isomerization of Carbohydrates Using Solid Lewis Acids 267
- 8.5 Production of Furanic Species Through Acid-Catalyzed Dehydration of Sugars 268
- 8.6 Acid-Catalyzed Upgrading Reactions for Biomass-Derived Platform Chemicals 274
- 8.7 Process Intensification: Cascade Reactions and Bifunctional Materials 278
- 8.8 Concluding Remarks 284

9. Catalytic Depolymerization and Deoxygenation of Lignin

- 9.1 Introduction 290
- 9.2 Cleavage of C—O and C—C Bond Linkages in Lignin 294
- 9.3 Depolymerization of Lignin 302
- 9.4 Upgrading the Lignin-Derived Small Molecules 310
- 9.5 Conclusion and Outlook 316

10. Tomorrow's Biofuels: Hybrid Biogasoline by Co-processing in FCC Units

- 10.1 Introduction 322
- 10.2 FCC Co-processing 325

- 10.3 HDT Co-processing Case Studies 346
- 10.4 Conclusions 347

11. Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production

- 11.1 Introduction 352
- 11.2 Biomass Liquefaction Processes 356
- 11.3 Characteristics of BOs 362
- 11.4 Reference Technology: The HT of Fossil Oils 368
- 11.5 BO Upgrading 375
- 11.6 Summary, Recent Advances, and Outlook 392

12. Fischer-Tropsch Synthesis to Biofuels (BtL Process)

- 12.1 Introduction 398
- 12.2 History of FT Synthesis and New Developments in BtL 398
- 12.3 Syngas: A Renewable Carbon Source from Biomass 403
- 12.4 Thermodynamic and Kinetic Considerations of FT Synthesis 414
- 12.5 Different Kinds of Catalysts 418
- 12.6 FT Reactors 423
- 12.7 Reaction Conditions at the Laboratory and Industrial Scale 427
- 12.8 Mechanism of FT Reactions 435
- 12.9 Conclusions 439

13. Integrating White Biotechnology in Lignocellulosic Biomass Transformations: From Enzyme-Catalysis to Metabolic Engineering

- 13.1 Motivation for the Implementation of White Biotechnology in Biorefineries 445
- 13.2 Biocatalysis for Lignocellulose Processing: Free, Isolated Enzymes 449
- 13.3 Fermentation and Metabolic Engineering for the Production of Bio-Based Commodities 458
- 13.4 Concluding Remarks 463

14. Steam Reforming of Bio-oils to Hydrogen	14.1 Introduction 468	14.2 Thermodynamic Considerations of Oxygenates Steam Reforming 470	14.3 Catalyst Development 471	14.4 Reaction Network and Mechanism 477	14.5 Reactor Systems 478	14.6 Environmental Assessment of Bio-oil to Hydrogen Production via Life Cycle Analysis 487	14.7 Conclusions and Future Aspects 490	15.5 Production of Hydrogen by Photoreforming Reactions 512	15.6 Summary and Conclusions 523
15. Photocatalytic Production of Renewable Hydrogen	15.1 Introduction 496	15.2 Fundamental Concepts of Semiconductor Photocatalysis 497	15.3 Semiconductor Photocatalysts 502	15.4 Hydrogen Production by Photocatalytic Cleavage of Water 508	16. Catalytic Transformation of CO ₂ to Fuels and Chemicals, with Reference to Biorefineries	16.1 Introduction 529	16.2 Strategies for Valorization of CO ₂ in Biorefineries 539	16.3 Catalytic Conversion of CO ₂ 547	16.4 Conclusions 551
					17. The Role of Heterogeneous Catalysis in the Biorefinery of the Future	17.1 Introduction 557	17.2 The Role of Heterogeneous Catalysis in Biorefineries 558	17.3 Future Prospects and Conclusions 573	
					Index 577				