

Brief Contents

Foundations of Environmental Geology 1

Chapter 1	Philosophy and Fundamental Concepts	2
Chapter 2	Internal Structure of Earth and Plate Tectonics	40
Chapter 3	Minerals and Rocks	72
Chapter 4	Ecology and Geology	110

Earth Processes and Natural Hazards 137

Chapter 5	Introduction to Natural Hazards	138
Chapter 6	Earthquakes	168
Chapter 7	Tsunami	222
Chapter 8	Volcanic Activity	248
Chapter 9	Rivers and Flooding	286
Chapter 10	Slope Processes, Landslides, and Subsidence	326
Chapter 11	Coastal Processes	362
Chapter 12	Impact of Extraterrestrial Objects	402

Part Resources and Pollution 427

Chapter 13	Water Resources	428
Chapter 14	Water Pollution	464
Chapter 15	Mineral Resources and the Environment	500
Chapter 16	Energy Resources	534
Chapter 17	Soils and Environment	586

Part Environmental Management, Global Perspective, and Society 615

Chapter 18	Global Climate Change	616
Chapter 19	Geology, Society, and the Future	662

Contents

Preface ix

Foundations of Environmental Geology 1

Philosophy and Fundamental Concepts 2

Case History: Caribbean Island of Hispaniola: Story of History, People, Environmental Damage, and Earthquake 4

1.1 Introduction to Environmental Geology 7

A Closer Look: Earth's Place in Space 9

1.2 Fundamental Concepts of Environmental Geology 12

Concept One: Human Population Growth 12

Concept Two: Sustainability 17

Concept Three: Earth as a System 19

Case History: The Aral Sea: The Death of a Sea 20

A Closer Look: The Gaia Hypothesis 24

Concept Four: Hazardous Earth Processes 25

Concept Five: Scientific Knowledge and Values 26

A Closer Look: Knowledge, Imagination, and Critical Thinking 28

A Closer Look: Easter Island: A Complex Problem to Understand 34

Chapter 2

Internal Structure of Earth and Plate Tectonics 40

Case History: Two Cities on a Plate Boundary 42

2.1 Internal Structure of Earth 42

2.2 How We Know About the Internal Structure of Earth 45

2.3 Plate Tectonics 46

A Closer Look: The Wonder of Mountains 52

2.4 A Detailed Look at Seafloor Spreading 55

2.5 Pangaea and Present Continents 59

2.6 How Plate Tectonics Works: Putting It Together 63

2.7 Plate Tectonics and Environmental Geology 65

Minerals and Rocks 72

Case History: The Asbestos Controversy 74

3.1 Minerals 74

3.2 Important Rock-Forming Minerals 79

A Closer Look: Weathering 82

A Closer Look: Clay 85

3.3 Rock Cycle 86

3.4 Three Rock Laws 88

3.5 Igneous Rocks 88

3.6 Sedimentary Rocks 92

3.7 Metamorphic Rocks 96

3.8 Rock Strength and Deformation 100

Case History: St. Francis Dam 101

3.9 Rock Structures 102

Chapter 3

Ecology and Geology 110

Case History: Endangered Steelhead Trout in Southern California: It's All About Geology 112

4.1 Ecology for Geologists: Basic Terms 112

4.2 Geology and Biodiversity 115

A Closer Look: Seawalls and Biodiversity 124

4.3 Ecological Restoration 126

A Closer Look: Restoration of the Kissimmee River 127

A Closer Look: Restoration of the Florida Everglades 129

A Closer Look: Coastal Sand Dune Restoration at Pocket Beaches: University of California, Santa Barbara 131

Earth Processes and Natural Hazards 137

Introduction to Natural Hazards 138

Case History: Hurricane Katrina, the Most Serious Natural Catastrophe in U.S. History 140

5.1 Hazards, Disasters, and Natural Processes 142

A Closer Look: The Magnitude–Frequency Concept 145

5.2 Evaluating Hazards: History, Linkages, Disaster Prediction, and Risk Assessment 149

A Closer Look: Scientists, Hazards, and the Media 155

5.3 The Human Response to Hazards 156

5.4 Global Climate and Hazards 160

5.5 Population Increase, Land Use Change, and Natural Hazards 160

A Closer Look: Nevado del Ruiz: A Story of People, Land Use, and Volcanic Eruption 162

Chapter 6

Earthquakes 168

Case History: Italian Earthquake of 2009 and Haiti Earthquake of 2010 170

6.1 Introduction to Earthquakes 170

6.2 Earthquake Magnitude 170

6.3 Earthquake Intensity 173

6.4 Plate Boundary Earthquakes 177

6.5 Intraplate Earthquakes 178

6.6 Earthquake Processes 179

Case History: Northridge, 1994 183

6.7 Earthquake Shaking 184

6.8 Earthquake Cycle 195

6.9 Earthquakes Caused by Human Activity 197

- 6.10 Effects of Earthquakes 198
- 6.11 Earthquake Risk and Earthquake Prediction 202
- 6.12 Toward Earthquake Prediction 206
- 6.13 Sequence of Earthquakes in Turkey: Can One Earthquake Set up Another? 206
- 6.14 The Response to Earthquake Hazards 208

A Closer Look: Earthquake Hazard Evaluation: Ground Motion and Slip Rate 209

A Closer Look: The Alaska Earthquake of 2002 and the Value of Estimating Potential Ground Rupture 213

Tsunami 222

Case History: Indonesian Tsunami 224

7.1 Introduction 228

7.2 Regions at Risk 233

7.3 Effects of Tsunamis and Linkages to Other Natural Hazards 235

7.4 Minimizing the Tsunami Hazard 236

7.5 Perception and Personal Adjustment to Tsunami Hazard 243

Volcanic Activity 248

Case History: Mt. Unzen, 1991 250

8.1 Introduction to Volcanic Hazards 250

8.2 Volcanism and Volcanoes 251

8.3 Volcano Types 253

A Closer Look: How Magma Forms 254

8.4 Volcano Origins 260

8.5 Volcanic Features 261

8.6 Volcanic Hazards 266

8.7 Two Case Histories 274

8.8 Forecasting Volcanic Activity 278

8.9 Adjustment to and Perception of the Volcanic Hazard 282

Chapter 9

Rivers and Flooding 286

Case History: Pakistan Floods of 2010 with Implications for the United States 288

9.1 Rivers: Historical Use 290

9.2 Streams and Rivers 290

9.3 Sediment in Rivers 292

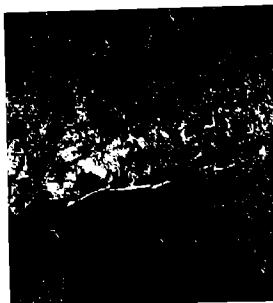
9.4 River Velocity, Discharge, Erosion, and Sediment Deposition 292

9.5 Effects of Land Use Changes	294
<i>A Closer Look: History of a River</i>	295
9.6 Channel Patterns and Floodplain Formation	297
9.7 River Flooding	298
<i>A Closer Look: Magnitude and Frequency of Floods</i>	300
9.8 Urbanization and Flooding	304
9.9 The Nature and Extent of Flood Hazards	307
9.10 Adjustments to Flood Hazards	307
<i>A Closer Look: Mississippi River Flooding, 1973 and 1993</i>	311
9.11 Perception of Flooding	320

Chapter 10

Slope Processes, Landslides, and Subsidence 326

<i>Case History: La Conchita Landslide of 2005</i>	328
10.1 Introduction to Landslides	330
10.2 Slope Processes and Types of Landslides	331
10.3 Slope Stability	333
<i>A Closer Look: Calculating a Factor of Safety for a Simple Landslide</i>	335
<i>A Closer Look: Translation Slides Along Bedding Planes</i>	337
<i>Case History: Vajont Dam</i>	343
10.4 Human Use and Landslides	345
10.5 Minimizing the Landslide Hazard	347
10.6 Snow Avalanches	351
10.7 Subsidence	352
10.8 Perception of the Landslide Hazard	358


Chapter 11

Coastal Processes 362

<i>Case History: The Cape Hatteras Lighthouse Controversy</i>	364
11.1 Introduction to Coastal Hazards	364
11.2 Coastal Processes	366
11.3 Coastal Erosion	372
<i>A Closer Look: Beach Budget</i>	373
11.4 Coastal Hazards and Engineering Structures	376
<i>A Closer Look: Measuring Coastal Change</i>	377
11.5 Human Activity and Coastal Erosion: Some Examples	382
<i>A Closer Look: Coastal Erosion at Pointe du Hoc, France</i>	383
11.6 Tropical Cyclones	388
11.7 Perception of and Adjustment to Coastal Hazards	394
<i>A Closer Look: E-Lines and E-Zones</i>	397

Impact of Extraterrestrial Objects 402

<i>Case History: The Tunguska Event</i>	404
12.1 Earth's Place in Space	404
12.2 Aerial Bursts and Impacts	407
12.3 Mass Extinctions	414
<i>A Closer Look: Possible Extraterrestrial Impact 12,900 Years Ago</i>	416
12.4 Minimizing the Impact Hazard	421
<i>A Closer Look: Near-Earth Objects</i>	423

Resources and Pollution 427

Water Resources 428

<i>Case History: Long Island, New York</i>	430
13.1 Water: A Brief Global Perspective	432
13.2 Surface Water	433
13.3 Groundwater	437
13.4 Interactions Between Surface Water and Groundwater	442
13.5 Desalination	445
13.6 Water Use	445
<i>Case History: The Edwards Aquifer, Texas—Water Resource in Conflict</i>	446
13.7 Water Management in the Future	453
<i>A Closer Look: Management of the Colorado River</i>	454
13.8 Water and Ecosystems	458
<i>A Closer Look: Wetlands</i>	459
13.9 Emerging Global Water Shortages	460

Water Pollution 464

Case History: North Carolina's Bay of Pigs 466

- 14.1 An Overview of Water Pollution 468
- 14.2 Selected Water Pollutants 469
- 14.3 Surface-Water Pollution and Treatment 480
 - A Closer Look: Acid Mine Drainage 483
- 14.4 Groundwater Pollution and Treatment 484
- 14.5 Water-Quality Standards 488
- 14.6 Wastewater Treatment 489
 - A Closer Look: Boston Harbor: Cleaning Up a National Treasure 493
- 14.7 Federal Legislation 496
- 14.8 What Can Be Done to Reduce Effects of Water Pollution? 497

Mineral Resources and the Environment 500

Case History: A Mine Near Golden, Colorado, Is Transformed into a Golf Course 502

- 15.1 Minerals and Human Use 502
- 15.2 Geology of Mineral Resources 506
 - A Closer Look: Plate Tectonics and Minerals 507
- 15.3 Environmental Impact of Mineral Development 520
 - A Closer Look: Mining and Toxicity 525
 - A Closer Look: Homestake Mine, South Dakota 528
- 15.4 Recycling Mineral Resources 530
- 15.5 Minerals and Sustainability 530

Energy Resources 534

Case History: Energy Transitions from Approximately 1800 to Present 536

- 16.1 Worry Over Energy Sources is Nothing New: Energy Shocks Past and Present 536
- 16.2 Peak Oil: When Will It Occur and What Is Its Importance? 538
- 16.3 Energy Supply and Energy Demand 539
- 16.4 Fossil Fuels 541
 - A Closer Look: Energy Units 542
 - A Closer Look: Coal Sludge in the Appalachian Mountains 548
- 16.5 Future of Oil 557
- 16.6 Fossil Fuel and Acid Rain 558
- 16.7 Nuclear Energy 561
 - A Closer Look: Radioactivity 562

16.8 Geothermal Energy 571

16.9 Renewable Energy Sources 575

16.10 Conservation, Efficiency, and Cogeneration 582

16.11 Energy Policy for the Future 582

Soils and Environment 586

Case History: Times Beach, Missouri 588

- 17.1 Introduction to Soils 588
- 17.2 Soil Profiles 590
- 17.3 Soil Properties 592
 - Soil Fertility 595
 - Water in Soil 595
- 17.4 Soil Classification 596
- 17.5 Engineering Properties of Soils 599
- 17.6 Rates of Soil Erosion 602
 - A Closer Look: The Universal Soil Loss Equation 603
- 17.7 Sediment Pollution 603
 - Case History: Reduction of Sediment Pollution, Maryland 604
- 17.8 Land Use and Environmental Problems of Soils 604
- 17.9 Soil Pollution 610
- 17.10 Soil Surveys and Land Use Planning 610

Environmental Management, Global Perspective, and Society 615

Chapter

Global Climate Change 616

Case History: What Does Our Recent History Tell Us About Potential Consequences of Global Warming? 618

- 18.1 Global Change and Earth Systems Science: An Overview 618
- 18.2 Earth's Climate and Atmosphere 623
- 18.3 The Greenhouse Effect 624
- 18.4 How We Study Past Climate Change 627
- 18.5 Global Warming 630
- 18.6 Potential Effects of Global Climate Change 638
 - A Closer Look: Desertification 647
 - A Closer Look: El Niño 650
- 18.7 Coupling of Global Change Processes: Ozone Depletion and Global Warming 656
 - A Closer Look: Abrupt Climate Change 657

Geology, Society, and the Future 662

Case History: Radon Gas: The Stanley Watras Story 664

19.1 Introduction 664

19.2 Geology and Environmental Health 666

A Closer Look: Lead in the Environment 666

19.3 Air Pollution: Introduction and Geologic Perspective 668

A Closer Look: Radon Gas 669

19.4 Waste Management and Geology 680

A Closer Look: Love Canal 688

19.5 Environmental Analysis 693

Minerals A-2

Rocks B-2

Maps and Related Topics C-1

How Geologists Determine Geologic Time D-2

Darcy's Law E-1

Glossary G-1

References R-1

Index I-1