

# BRIEF CONTENTS

|                      |                                              |     |
|----------------------|----------------------------------------------|-----|
| <b>1</b>             | The Origin of the Ocean                      | 1   |
| <b>2</b>             | A History of Marine Science                  | 30  |
| <b>3</b>             | Earth Structure and Plate Tectonics          | 66  |
| <b>4</b>             | Ocean Basins                                 | 112 |
| <b>5</b>             | Ocean Sediments                              | 148 |
| <b>6</b>             | Water and Ocean Structure                    | 174 |
| <b>7</b>             | Ocean Chemistry                              | 206 |
| <b>8</b>             | Circulation of the Atmosphere                | 226 |
| <b>9</b>             | Circulation of the Ocean                     | 262 |
| <b>10</b>            | Waves                                        | 296 |
| <b>11</b>            | Tides                                        | 330 |
| <b>12</b>            | Coasts                                       | 350 |
| <b>13</b>            | Life in the Ocean                            | 384 |
| <b>14</b>            | Plankton, Algae, and Plants                  | 412 |
| <b>15</b>            | Marine Animals                               | 436 |
| <b>16</b>            | Marine Communities                           | 470 |
| <b>17</b>            | Marine Resources                             | 492 |
| <b>18</b>            | The Ocean and the Environment                | 516 |
|                      | Afterword                                    | 547 |
|                      | Measurements and Conversions                 | 548 |
| <b>Appendix I</b>    | Geologic Time                                | 552 |
| <b>Appendix II</b>   | Latitude and Longitude, Time, and Navigation | 553 |
| <b>Appendix III</b>  | Maps and Charts                              | 556 |
| <b>Appendix IV</b>   | The Beaufort Scale                           | 560 |
| <b>Appendix V</b>    | Taxonomic Classification of Marine Organisms | 561 |
| <b>Appendix VI</b>   | Periodic Table of the Elements               | 563 |
| <b>Appendix VII</b>  | Working in Marine Science                    | 564 |
| <b>Appendix VIII</b> | The World Ocean Seafloor                     | 568 |
| <b>Appendix IX</b>   | Glossary                                     | 576 |
|                      | Index                                        | 594 |

# CONTENTS

## Foreword **v**

## Preface **xxi**

**1 The Origin of the Ocean **1****

- 1.1 Earth Is an Ocean World **2****
- 1.2 Marine Scientists Use the Logic of Science to Study the Ocean **3****
- 1.3 Stars Form Seas **8****
  - Earth Was Formed of Material Made in Stars **9**
  - Stars and Planets Are Contained within Galaxies **9**
  - Stars Make Heavy Elements from Lighter Ones **10**
  - Solar Systems Form by Accretion **13**
- 1.4 Earth, Ocean, and Atmosphere Accumulated in Layers Sorted by Density **14****

*How Do We Know... The Age of Earth and the Ocean? **18***

- 1.5 Life Probably Originated in the Ocean **18****
- 1.6 What Will Be Earth's Future? **20****
- 1.7 Are There Other Ocean Worlds? **21****
  - Our Solar System's Outer Moons **21**

*Insight from a National Geographic Explorer **22***

- Mars **23**
- Titan **25**
- Extrasolar Planets **25**
- Life and Oceans? **26**

**Questions from Students **27****

**Chapter in Perspective **28****

**Terms and Concepts to Remember **28****

**Study Questions **28****

**2 A History of Marine Science **30****

- 2.1 Understanding the Ocean Began with Voyaging for Trade and Exploration **32****
  - Early Peoples Traveled the Ocean for Economic Reasons **32**
  - Systematic Study of the Ocean Began at the Library of Alexandria **33**

Eratosthenes Accurately Calculated the Size and Shape of Earth **33**

*Box 2.1: Latitude and Longitude **37***

- Oceanian Seafarers Colonized Distant Islands **38**
- Viking Raiders Discovered North America **40**
- The Chinese Undertook Organized Voyages of Discovery **41**

*How Do We Know... When People First Arrived at Distant Places? **42***

- 2.2 The Age of European Discovery **45****
  - Prince Henry Launched the European Age of Discovery **45**
- 2.3 Voyaging Combined with Science to Advance Ocean Studies **46****
  - Captain James Cook Was the First Marine Scientist **46**
  - Accurate Determination of Longitude Was the Key to Oceanic Exploration and Mapping **49**
- 2.4 The First Scientific Expeditions Were Undertaken by Governments **50****
  - The United States Exploring Expedition Helped Establish Natural Science in America **51**
  - Matthew Maury Discovered Worldwide Patterns of Winds and Ocean Currents **51**
  - The *Challenger* Expedition Was Organized from the First as a Scientific Expedition **52**
  - Ocean Studies Have Military Applications **55**
- 2.5 Contemporary Oceanography Makes Use of Modern Technology **56****
  - Polar Exploration Advanced Ocean Studies **56**
  - New Ships for New Tasks **56**
  - Oceanographic Institutions Arose to Oversee Complex Research Projects **58**
  - Robot Devices Are Becoming More Capable **60**
  - Satellites Have Become Important Tools in Ocean Exploration **60**

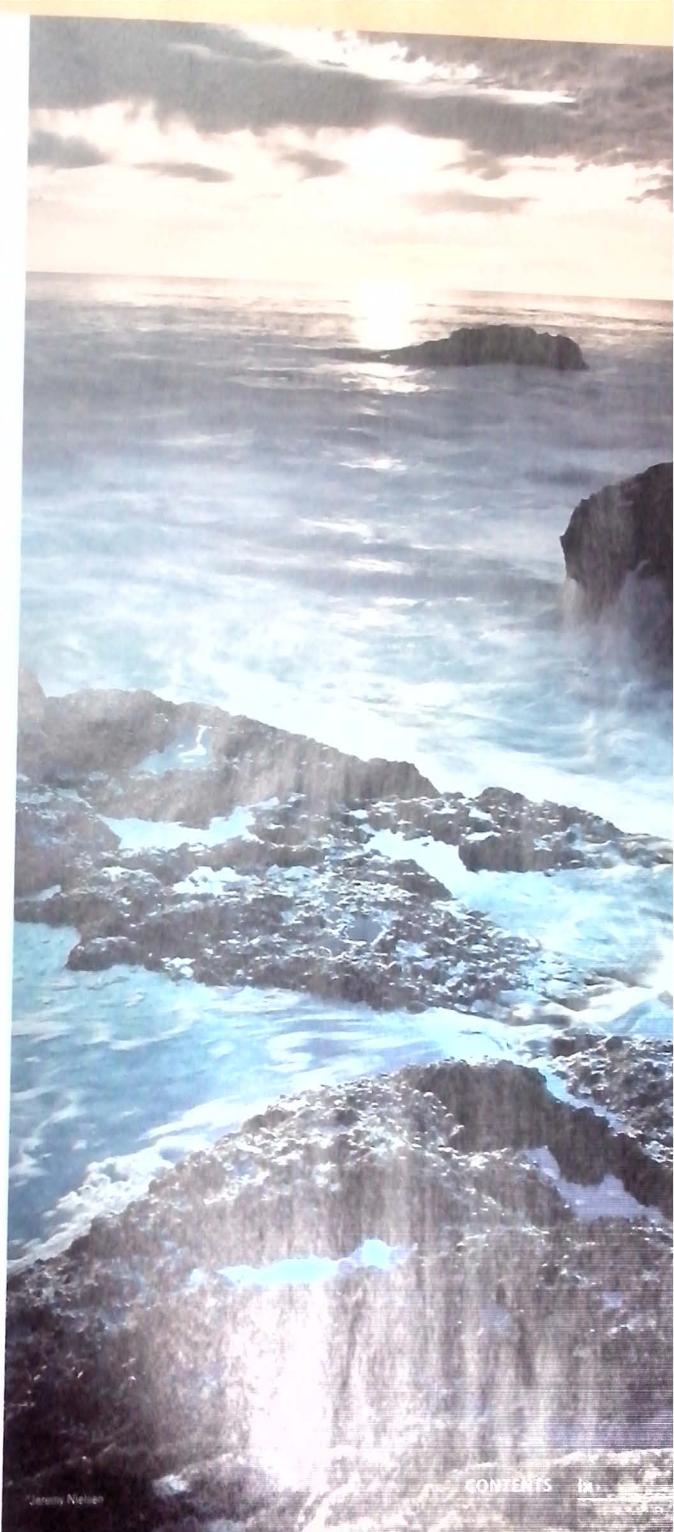
**Questions from Students **63****

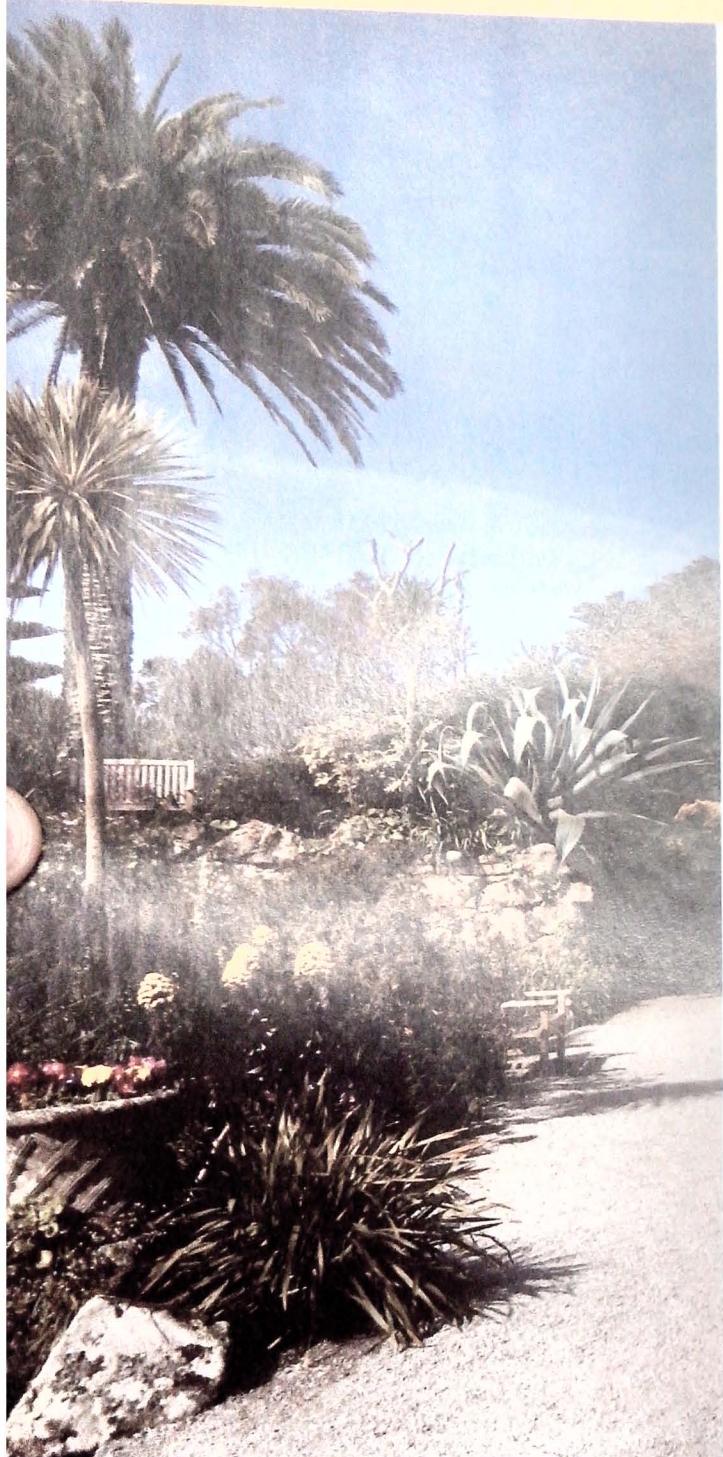
**Chapter in Perspective **64****

**Terms and Concepts to Remember **65****

**Study Questions **65****

### 3 Earth Structure and Plate Tectonics 66


- 3.1 Pieces of Earth's Surface Look Like They Once Fit Together 68
- 3.2 Earth's Interior Is Layered 70
- 3.3 The Study of Earthquakes Provides Evidence for Layering 72
  - Seismic Waves Travel through Earth and along Its Surface 72
  - Earthquake Wave Shadow Zones Confirmed the Presence of Earth's Core 73
  - Data from an Earthquake Confirmed the Model of Earth Layering 74
- 3.4 Earth's Inner Structure Was Gradually Revealed 75
  - Each of Earth's Inner Layers Has Unique Characteristics 75
  - Earth's Interior Is Heated by the Decay of Radioactive Elements 75
  - Isostatic Equilibrium Supports Continents above Sea Level 76


#### How Do We Know... The Age of Rocks? 77

- 3.5 The New Understanding of Earth Evolved Slowly 79
  - The Age of Earth Was Controversial and Not Easily Determined 79
- 3.6 Wegener's Idea Is Transformed 80
- 3.7 The Breakthrough: From Seafloor Spreading to Plate Tectonics 81
- 3.8 Plates Interact at Plate Boundaries 85
  - Ocean Basins Form at Divergent Plate Boundaries 85
  - Island Arcs Form, Continents Collide, and Crust Recycles at Convergent Plate Boundaries 87

#### Insight from a National Geographic Explorer 89

- Crust Fractures and Slides at Transform Plate Boundaries 95
- 3.9 A Summary of Plate Interactions 96
- 3.10 Confirmation of Plate Tectonics 96
  - A History of Plate Movement Has Been Captured in Residual Magnetic Fields 96
  - Plate Movement above Mantle Plumes and Hot Spots Provides Evidence of Plate Tectonics 102





Sediment Age and Distribution, Oceanic Ridges, and Terranes Are Explained by Plate Tectonics **105**

3.11 Scientists Still Have Much to Learn about the Tectonic Process **107**

Questions from Students **109**

Chapter in Perspective **110**

Terms and Concepts to Remember **111**

Study Questions **111**

## 4 Ocean Basins **112**

4.1 The Ocean Floor Is Mapped by Bathymetry **114**

Echo Sounders Bounce Sound off the Seabed **114**

Multibeam Systems Combine Many Echo Sounders **115**

Satellites Can Be Used to Map Seabed Contours **116**

*Caught from a National Geographic Explorer* **117**  
Robots Descend to Observe the Details **118**

4.2 Ocean-Floor Topography Varies with Location **120**

*How Do We Know... Seabed Details?* **121**

4.3 Continental Margins May Be Active or Passive **122**

Continental Shelves Are Seaward Extensions of the Continents **123**

Continental Slopes Connect Continental Shelves to the Deep-Ocean Floor **128**

Submarine Canyons Form at the Junction between Continental Shelf and Continental Slope **129**

Continental Rises Form as Sediments Accumulate at the Base of the Continental Slope **130**

4.4 The Topology of Deep-Ocean Basins Differs from That of the Continental Margin **131**

Oceanic Ridges Circle the World **133**

Hydrothermal Vents Are Hot Springs on Active Oceanic Ridges **135**

Abyssal Plains and Abyssal Hills Cover Most of Earth's Surface **137**

Volcanic Seamounts and Guyots Project above the Seabed **138**

Trenches and Island Arcs Form in Subduction Zones **138**

|                                                               |     |
|---------------------------------------------------------------|-----|
| 4.5 The Grand Tour                                            | 140 |
| How Do We Know... What It's Like at the Ocean's Deepest Spot? | 142 |
| Questions from Students                                       | 146 |
| Chapter in Perspective                                        | 146 |
| Terms and Concepts to Remember                                | 147 |
| Study Questions                                               | 147 |

## 5 Ocean Sediments 148

|                                                                                 |     |
|---------------------------------------------------------------------------------|-----|
| 5.1 Ocean Sediments Vary Greatly in Appearance                                  | 150 |
| 5.2 Sediments May Be Classified by Particle Size                                | 152 |
| 5.3 Sediments May Be Classified by Source                                       | 153 |
| Terrigenous Sediments Come from Land                                            | 153 |
| Biogenous Sediments Form from the Remains of Marine Organisms                   | 154 |
| Hydrogenous Sediments Form Directly from Seawater                               | 154 |
| Cosmogenous Sediments Come from Space                                           | 154 |
| Marine Sediments Are Usually Combinations of Terrigenous and Biogenous Deposits | 155 |
| 5.4 Neritic Sediments Overlie Continental Margins                               | 156 |
| 5.5 Pelagic Sediments Vary in Composition and Thickness                         | 159 |
| Turbidites Are Deposited on the Seabed by Turbidity Currents                    | 159 |
| Clays Are the Finest and Most Easily Transported Terrigenous Sediments          | 159 |
| Oozes Form from the Rigid Remains of Living Creatures                           | 159 |
| Hydrogenous Materials Precipitate out of Seawater Itself                        | 162 |
| Evaporites Precipitate as Seawater Evaporates                                   | 163 |
| Oolite Sands Form When Calcium Carbonate Precipitates from Seawater             | 163 |
| 5.6 Researchers Have Mapped the Distribution of Deep-Ocean Sediments            | 164 |
| 5.7 Scientists Use Specialized Tools to Study Ocean Sediments                   | 165 |
| 5.8 Sediments Are Historical Records of Ocean Processes                         | 166 |
| How Do We Know... About Past Climates and Catastrophes?                         | 168 |

|                                                 |     |
|-------------------------------------------------|-----|
| 5.9 Marine Sediments Are Economically Important | 171 |
| Questions from Students                         | 172 |
| Chapter in Perspective                          | 173 |
| Terms and Concepts to Remember                  | 173 |
| Study Questions                                 | 173 |

## 6 Water and Ocean Structure 174

|                                                                                  |     |
|----------------------------------------------------------------------------------|-----|
| 6.1 A Note to the Reader                                                         | 176 |
| 6.2 Familiar, Abundant, and Odd                                                  | 176 |
| 6.3 The Water Molecule Is Held Together by Chemical Bonds                        | 176 |
| 6.4 Water Has Unusual Thermal Characteristics                                    | 177 |
| Heat and Temperature Are Not the Same Thing                                      | 178 |
| Not All Substances Have the Same Heat Capacity                                   | 178 |
| Water's Temperature Affects Its Density                                          | 178 |
| Water Becomes Less Dense When It Freezes                                         | 179 |
| Water Removes Heat from Surfaces as It Evaporates                                | 181 |
| Seawater and Pure Water Have Slightly Different Thermal Properties               | 182 |
| Box 6.1: Does Hot Water Freeze Faster Than Cold?                                 | 184 |
| 6.5 Surface Water Moderates Global Temperature                                   | 185 |
| Annual Freezing and Thawing of Ice Moderates Earth's Temperature                 | 185 |
| Movement of Water Vapor from Tropics to Poles Also Moderates Earth's Temperature | 185 |
| Global Warming May Be Influencing Oceanic Surface Temperature and Salinity       | 186 |
| Ocean Surface Conditions Depend on Latitude, Temperature, and Salinity           | 187 |
| 6.6 The Ocean Is Stratified by Density                                           | 192 |
| The Ocean Is Stratified into Three Density Zones by Temperature and Salinity     | 193 |
| Water Masses Have Characteristic Temperature, Salinity, and Density              | 194 |
| Density Stratification Usually Prevents Vertical Water Movement                  | 195 |
| 6.7 Refraction Can Bend the Paths of Light and Sound through Water               | 195 |





## 6.8 Light Does Not Travel Far through the Ocean 197

The Photic Zone Is the Sunlit Surface of the Ocean 197

Water Transmits Blue Light More Efficiently Than Red 197

## 6.9 Sound Travels Much Farther Than Light through the Ocean 199

Refraction Causes Sofar Layers and Shadow Zones 199

Sonar Systems Use Sound to Detect Underwater Objects 201

Ocean Sound Is Used to Monitor Climate Change 203

### Questions from Students 204

### Chapter in Perspective 205

### Terms and Concepts to Remember 205

### Study Questions 205

## 7 Ocean Chemistry 206

### 7.1 Water Is a Powerful Solvent 208

#### How Do We Know... The Nature of Water? 210

### 7.2 Seawater Consists of Water and Dissolved Solids 211

Salinity Is a Measure of Seawater's Total Dissolved Inorganic Solids 211

A Few Ions Account for Most of the Ocean's Salinity 211

The Components of Ocean Salinity Came from, and Have Been Modified by, Earth's Crust 211

The Ratio of Dissolved Solids in the Ocean Is Constant 213

Salinity Is Calculated by Seawater's Conductivity 215

The Ocean Is in Chemical Equilibrium 215

Seawater's Constituents May Be Conservative or Nonconservative 216

#### Box 7.1: Recycling on a Grand Scale 217

### 7.3 Gases Dissolve in Seawater 217

Nitrogen Is the Most Abundant Gas Dissolved in Seawater 218

Dissolved Oxygen Is Critical to Marine Life 218

The Ocean Is a Vast Carbon Reservoir 218

Gas Concentrations Vary with Depth 219

### 7.4 The Ocean's Acid-Base Balance Varies with Dissolved Components and Depth 219

## Questions from Students 224

## Chapter in Perspective 224

## Terms and Concepts to Remember 225

## Study Questions 225

## 8 Circulation of the Atmosphere 226

### 8.1 The Atmosphere and Ocean Interact with Each Other 228

### 8.2 The Atmosphere Is Composed Mainly of Nitrogen, Oxygen, and Water Vapor 228

### 8.3 The Atmosphere Moves in Response to Uneven Solar Heating and Earth's Rotation 230

The Solar Heating of Earth Varies with Latitude 231

The Solar Heating of Earth Also Varies with the Seasons 233

Earth's Uneven Solar Heating Results in Large-Scale Atmospheric Circulation 234

The Coriolis Effect Deflects the Path of Moving Objects 234

The Coriolis Effect Influences the Movement of Air in Atmospheric Circulation Cells 236

### 8.4 Atmospheric Circulation Generates Large-Scale Surface Wind Patterns 239

Cell Circulation Centers on the Meteorological (Not Geographical) Equator 239

Monsoons Are Wind Patterns That Change with the Seasons 241

Sea Breezes and Land Breezes Arise from Uneven Surface Heating 241

### 8.5 Storms Are Variations in Large-Scale Atmospheric Circulation 243

Storms Form within or between Air Masses 243

Extratropical Cyclones Form between Two Air Masses 244

Tropical Cyclones Form in One Air Mass 244

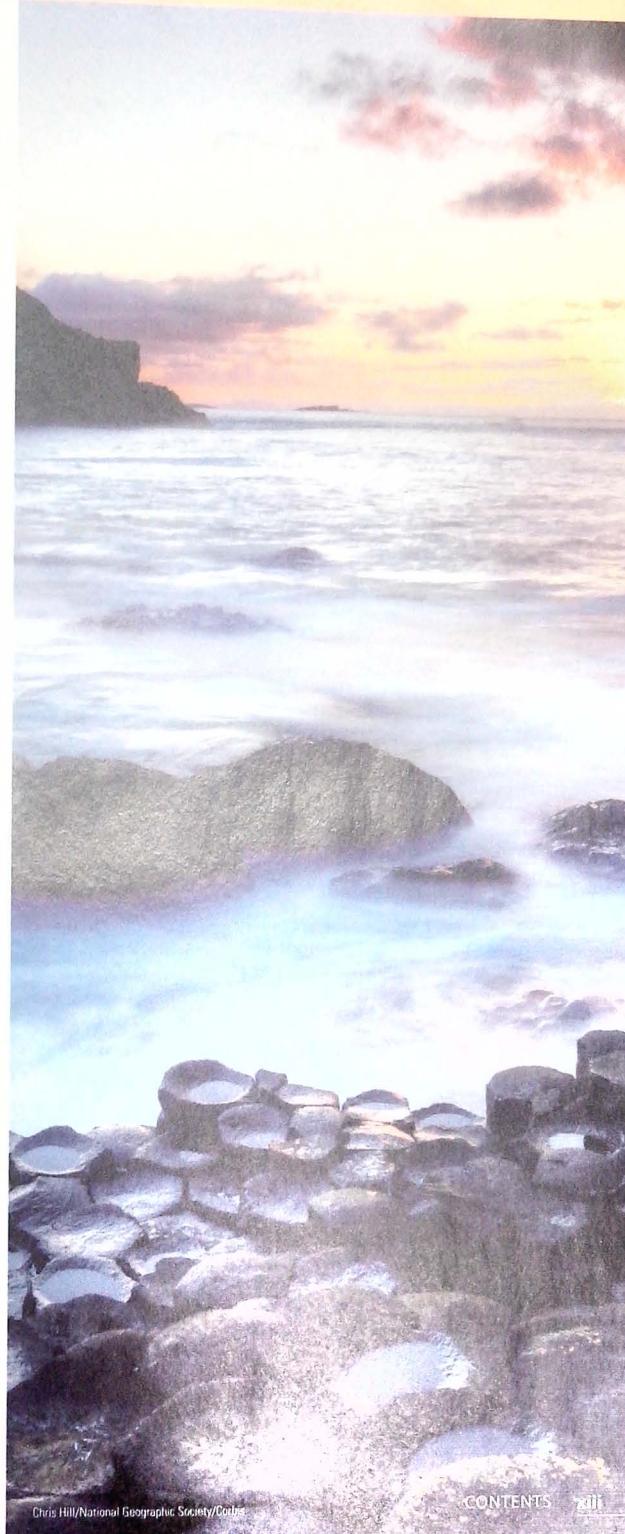
### 8.6 The Atlantic Hurricane Season of 2005 Was the Most Destructive Ever Recorded 251

#### Box 8.1: The Galveston Disasters of 1900 and 2008 252

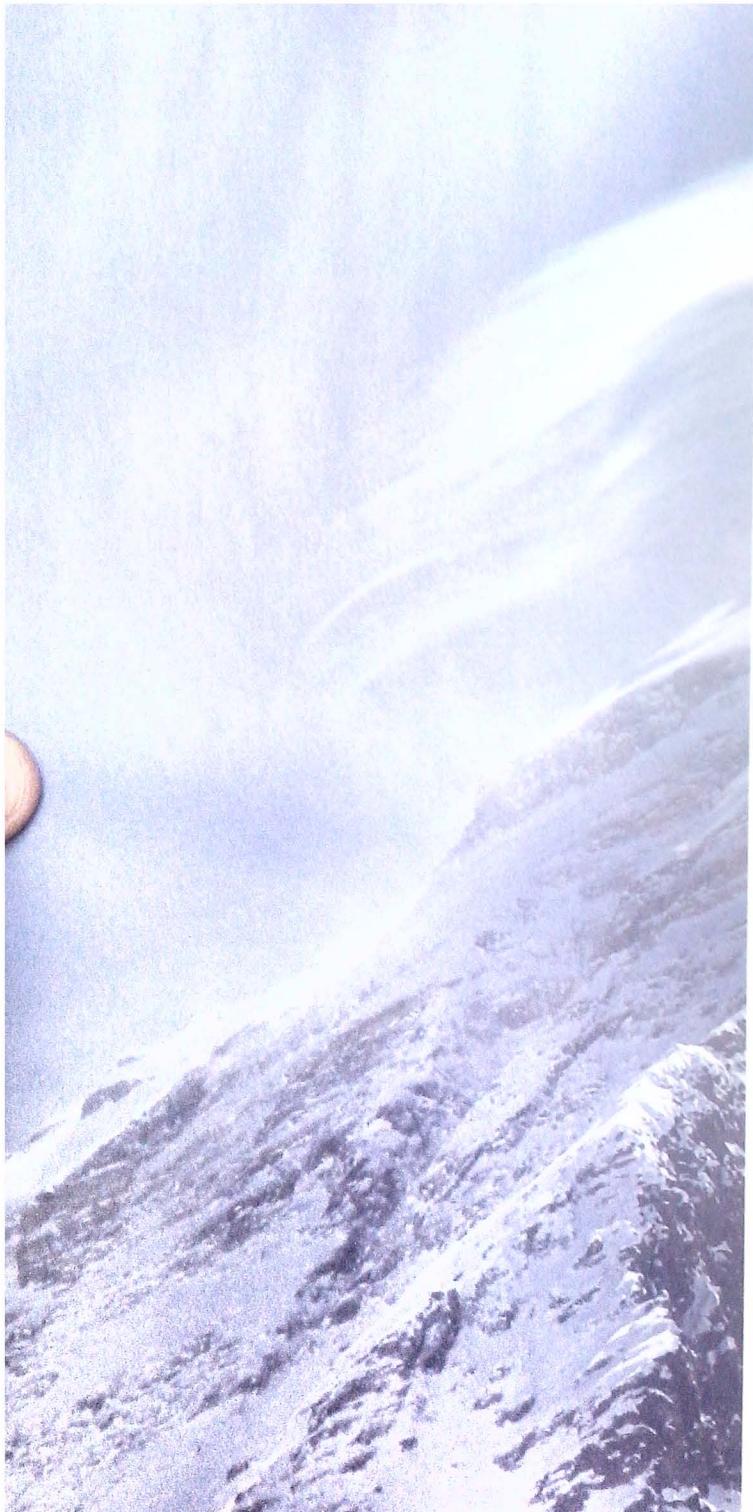
Hurricane Katrina Was the United States' Most Costly Natural Disaster 253

Hurricane Rita Struck Soon after Katrina 256

Hurricane Wilma Was the Most Powerful Atlantic Hurricane Ever Measured 256


The Hurricanes Dramatically Altered Coastal Environments 257

|                                         |     |
|-----------------------------------------|-----|
| Why Was the 2005 Season So Devastating? | 257 |
| Questions from Students                 | 258 |
| Chapter in Perspective                  | 259 |
| Terms and Concepts to Remember          | 260 |
| Study Questions                         | 260 |


**9 Circulation of the Ocean** 262

- 9.1 Mass Flow of Ocean Water Is Driven by Wind and Gravity 264
- 9.2 Surface Currents Are Driven by the Winds 265
  - Surface Currents Flow around the Periphery of Ocean Basins 265
  - Seawater Flows in Six Great Surface Circuits 267
  - Boundary Currents Have Different Characteristics 268
  - Westward Intensification 273
  - Countercurrents and Undercurrents Are Submerged Exceptions to Peripheral Flow 273
  - Calm Centers 274
  - A Final Word on Gyres 275
- 9.3 Surface Currents Affect Weather and Climate 276
- 9.4 Wind Can Cause Vertical Movement of Ocean Water 277
  - Nutrient-Rich Water Rises Near the Equator 277
  - Wind Can Induce Upwelling Near Coasts 278
  - Wind Can Also Induce Coastal Downwelling 278
  - Langmuir Circulation Affects the Ocean Surface 279
- 9.5 El Niño and La Niña Are Exceptions to Normal Wind and Current Flow 280
- 9.6 Thermohaline Circulation Affects All the Ocean's Water 285
  - Water Masses Have Distinct, Often Unique Characteristics 285
  - Different Combinations of Water Temperature and Salinity Can Yield the Same Density 286
  - Thermohaline Flow and Surface Flow: The Global Heat Connection 286
  - The Formation and Downwelling of Deep Water Occurs in Polar Regions 286
  - Water Masses May Converge, Fall, Travel across the Seabed, and Slowly Rise 287

How Do We Know... How Ocean Currents Work? 290



Chris Hill/National Geographic Society/Corbis



Questions from Students 293

Chapter in Perspective 294

Terms and Concepts to Remember 295

Study Questions 295

## 10 Waves 296

10.1 Ocean Waves Move Energy across the Sea Surface 298

10.2 Waves Are Classified by Their Physical Characteristics 300

Ocean Waves Are Formed by a Disturbing Force 300

Free Waves and Forced Waves 300

Waves Are Reduced by a Restoring Force 300

Wavelength Is the Most Useful Measure of Wave Size 301

10.3 The Behavior of Waves Is Influenced by the Depth of Water through Which They Are Moving 301

10.4 Wind Blowing over the Ocean Generates Waves 303

Larger Swell Move Faster than Small Swell 304

Many Factors Influence Wind-Wave Development 306

Wind Waves Can Grow to Enormous Size 308

*Insight from a National Geographic Explorer* 309

10.5 Interference Produces Irregular Wave Motions 310

10.6 Deep-Water Waves Change to Shallow-Water Waves as They Approach Shore 312

Waves Refract When They Approach a Shore at an Angle 313

Waves Can Diffract When Wave Trains Are Interrupted 314

Waves Can Reflect from Large Vertical Surfaces 315

10.7 Internal Waves Can Form between Ocean Layers of Differing Densities 315

*How Do We Know... What Waves Do in the Open Ocean?* 316

10.8 "Tidal Waves" Are Probably Not What You Think 317

10.9 Storm Surges Form beneath Strong Cyclonic Storms 318

10.10 Water Can Rock in a Confined Basin 319

## 10.11 Water Displacement Causes Tsunami and Seismic Sea Waves 319

Tsunami Move at High Speed 321

What Is It Like to Encounter a Tsunami? 323

Tsunami Have a Long and Destructive History 324

Tsunami Warning Networks Save Lives 325

### Questions from Students 327

### Chapter in Perspective 328

### Terms and Concepts to Remember 329

### Study Questions 329

## 11 Tides 330

### 11.1 Tides Are the Longest of All Ocean Waves 332

### 11.2 Tides Are Forced Waves Formed by Gravity and Inertia 333

The Movement of the Moon Generates Strong Tractive Forces 333

The Sun Also Generates Tractive Forces 337

Sun and Moon Influence the Tides Together 337

### 11.3 The Dynamic Theory of Tides Adds Fluid Motion Dynamics to the Equilibrium Theory 339

Tidal Patterns Center on Amphidromic Points 339

The Tidal Reference Level Is Called the Tidal Datum 340

Tidal Patterns Vary with Ocean Basin Shape and Size 341

Tide Waves Generate Tidal Currents 343

Tidal Friction Slows Earth's Rotation 344

### 11.4 Most Tides Can Be Accurately Predicted 344

### 11.5 Tidal Patterns Can Affect Marine Organisms 344

### 11.6 Power Can Be Extracted from Tidal Motion 345

### Questions from Students 347

### Chapter in Perspective 348

### Terms and Concepts to Remember 348

### Study Questions 349

## 12 Coasts 350

### 12.1 Coasts Are Shaped by Marine and Terrestrial Processes 352

### 12.2 Erosional Processes Dominate Some Coasts 354

Erosional Coasts Often Have Complex Features 356

Shorelines Can Be Straightened by Selective Erosion 357

Coasts Are Also Shaped by Land Erosion and Sea-Level Change 359

Volcanism and Earth Movements Affect Coasts 359

### 12.3 Beaches Dominate Depositional Coasts 360

Beaches Consist of Loose Particles 360

Wave Action, Particle Size, and Beach Permeability Combine to Build Beaches 361

Beaches Often Have a Distinct Profile 362

Waves Transport Sediment on Beaches 364

Sand Input and Outflow Are Balanced in Coastal Cells 365

### 12.4 Larger Scale Features Accumulate on Depositional Coasts 366

Sand Spits and Bay Mouth Bars Form When the Longshore Current Slows 366

Barrier Islands and Sea Islands Are Separated from Land 366

Deltas Can Form at River Mouths 367

### 12.5 Biological Activity Forms and Modifies Coasts 370

Reefs Can Be Built by Coral Animals 370

Coral Reefs Are Classified in Three Types 370

Mangrove Coasts Are Dominated by Sediment-Trapping Root Systems 371

### 12.6 Freshwater Meets the Ocean in Estuaries 371

Estuaries Are Classified by Their Origins 371

Estuary Characteristics Are Influenced by Water Density and Flow 374

Estuaries Support Complex Marine Communities 375

### 12.7 Characteristics of U.S. Coasts 376

Pacific Coast 377

Atlantic Coast 377

Gulf Coast 377

|                                                                                            |                                                                                 |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 12.8 Humans Interfere in Coastal Processes 378                                             | Dissolved Nutrients Are Required for the Production of Organic Matter 403       |
| Questions from Students 381                                                                | Salinity Influences the Function of Cell Membranes 404                          |
| Chapter in Perspective 382                                                                 | Dissolved Gas Concentrations Vary with Temperature 404                          |
| Terms and Concepts to Remember 382                                                         | Dissolved Carbon Dioxide Influences the Ocean's Acid-Base Balance 404           |
| Study Questions 383                                                                        | Hydrostatic Pressure Is Rarely Limiting 405                                     |
| <b>13 Life in the Ocean 384</b>                                                            | Substances Move through Cells by Diffusion, Osmosis, and Active Transport 405   |
| 13.1 Life on Earth Is Notable for Its Unity and Its Diversity 386                          | 13.9 The Marine Environment Is Classified in Distinct Zones 407                 |
| 13.2 The Concept of Evolution Helps Explain the Nature of Life in the Ocean 386            | 13.10 Rapid, Violent Change Causes Mass Extinctions 408                         |
| Evolution Appears to Operate by Natural Selection 386                                      | Questions from Students 409                                                     |
| Evolution "Fine-Tunes" Organisms to Their Environment 388                                  | Chapter in Perspective 410                                                      |
| 13.3 Oceanic Life Is Classified by Evolutionary Heritage 389                               | Terms and Concepts to Remember 410                                              |
| Systems of Classification May Be Artificial or Natural 389                                 | Study Questions 411                                                             |
| Scientific Names Describe Organisms 391                                                    |                                                                                 |
| 13.4 The Flow of Energy Allows Living Things to Maintain Complex Organization 391          | <b>14 Plankton, Algae, and Plants 412</b>                                       |
| Energy Can Be Stored through Photosynthesis 392                                            | 14.1 Plankton Drift with the Ocean 415                                          |
| Energy Can Also Be Stored through Chemosynthesis 393                                       | 14.2 Plankton Collection Methods Depend on the Organism's Size 416              |
| 13.5 Primary Producers Synthesize Organic Materials 393                                    | 14.3 Most Phytoplankton Are Photosynthetic Autotrophs 417                       |
| Primary Productivity Occurs in the Water Column, Seabed Sediments, and Even Solid Rock 395 | Picoplankton 417                                                                |
| Food Webs Disperse Energy through Communities 396                                          | Diatoms 418                                                                     |
| 13.6 Living Organisms Are Built from a Few Elements 398                                    | Dinoflagellates 421                                                             |
| 13.7 Elements Cycle between Living Organisms and Their Surroundings 399                    | Coccolithophores 421                                                            |
| The Carbon Cycle Is Earth's Largest Cycle 399                                              | 14.4 Measuring Primary Productivity 422                                         |
| Nitrogen Must Be "Fixed" to Be Available to Organisms 400                                  | 14.5 Lack of Nutrients and Light Can Limit Primary Productivity 424             |
| Lack of Iron and Other Trace Metals May Restrict the Growth of Marine Life 400             | Nutrient Availability Can Be a Limiting Factor 424                              |
| 13.8 Environmental Factors Influence the Success of Marine Organisms 401                   | Light May Also Be Limiting 424                                                  |
| Photosynthesis Depends on Light 401                                                        | 14.6 Production Equals Consumption at the Compensation Depth 425                |
| Temperature Influences Metabolic Rate 402                                                  | 14.7 Phytoplankton Productivity Varies with Local Conditions 426                |
|                                                                                            | 14.8 Zooplankton Consume Primary Producers 427                                  |
|                                                                                            | 14.9 Seaweeds and Marine Plants Are Diverse and Effective Primary Producers 430 |
|                                                                                            | Complex Adaptations Permit Seaweeds to Thrive in Shallow Waters 430             |
|                                                                                            | Seaweeds Are Nonvascular Organisms 431                                          |

|                                                          |     |
|----------------------------------------------------------|-----|
| Seaweeds Are Classified by Their Photosynthetic Pigments | 431 |
| Seaweeds Are Commercially Important                      | 432 |
| True Marine Plants Are Vascular Plants                   | 432 |
| Questions from Students                                  | 434 |
| Chapter in Perspective                                   | 434 |
| Terms and Concepts to Remember                           | 435 |
| Study Questions                                          | 435 |

## 15 Marine Animals 436

|                                                                              |     |
|------------------------------------------------------------------------------|-----|
| 15.1 Animals Evolved When Food and Oxygen Became Plentiful                   | 438 |
| Successful Animals Blend Effective Form and Function                         | 438 |
| The Oxygen Revolution                                                        | 438 |
| 15.2 Invertebrates Are the Most Successful and Abundant Animals              | 440 |
| Phylum Porifera Contains the Sponges                                         | 440 |
| Stinging Cells Define the Phylum Cnidaria                                    | 440 |
| 15.3 The Worm Phyla Are the Link to Advanced Animals                         | 443 |
| 15.4 Advanced Invertebrates Have Complex Bodies and Internal Systems         | 444 |
| The Phylum Mollusca Is Exceptionally Diverse                                 | 444 |
| The Phylum Arthropoda Is the Most Successful Animal Group                    | 447 |
| Insight from a National Geographic Explorer                                  | 448 |
| Sea Stars Are Typical of the Phylum Echinodermata                            | 449 |
| 15.5 Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold | 451 |
| Not All Chordates Have Backbones                                             | 451 |
| Vertebrate Chordates Have Backbones                                          | 451 |
| 15.6 Vertebrate Evolution Traces a Long and Diverse History                  | 451 |
| 15.7 Fishes Are Earth's Most Abundant and Successful Vertebrates             | 452 |
| Sharks Are Cartilaginous Fishes                                              | 453 |
| Insight from a National Geographic Explorer                                  | 454 |
| Bony Fishes Are the Most Abundant and Successful Fishes                      | 455 |
| 15.8 Fishes Are Successful Because of Unique Adaptations                     | 456 |
| Movement, Shape, and Propulsion                                              | 456 |
| Maintenance of Level                                                         | 456 |





Gas Exchange 456

Feeding and Defense 456

15.9 Sea Turtles and Marine Crocodiles Are Ocean-Going Reptiles 458

15.10 Some Marine Birds Are the World's Most Efficient Flyers 459

15.11 Marine Mammals Include the Largest Animals Ever to Have Lived 461

Order Cetacea: The Whales 461

Order Carnivora: Oceanic Carnivores 463

Order Sirenia: Manatees and Their Kin 463

Questions from Students 467

Chapter in Perspective 468

Terms and Concepts to Remember 468

Study Questions 469

## 16 Marine Communities 470

16.1 Marine Organisms Live in Communities 472

16.2 Communities Consist of Interacting Producers, Consumers, and Decomposers 472

Physical and Biological Environmental Factors Affect Communities 473

Organisms within a Community Compete for Resources 474

Growth Rate and Carrying Capacity Are Limited by Environmental Resistance 474

Population Density and Distribution Depend on Community Conditions 475

16.3 Marine Communities Change as Time Passes 475

16.4 Examples of Marine Communities 476

Rocky Intertidal Communities Are Densely Populated Despite Environmental Rigors 476

Seaweed Communities Shelter Organisms 478

Sand Beach Communities Are Sparsely Populated 478

Salt Marshes and Estuaries Often Act as Marine Nurseries 478

Coral Reefs Are Earth's Most Densely Populated and Diverse Communities 479

The Open Ocean Community Is Concentrated at the Surface 480

Insight from a National Geographic Explorer 481

The Deep-Sea Floor Is Earth's Most Uniform Community 482

|                                                                                               |                                                                                              |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Extremophiles Dwell in Deep Rock Communities <b>484</b>                                       | 17.6 The Law of the Sea Governs Marine Resource Allocation <b>510</b>                        |
| <b>Insight from a National Geographic Explorer 485</b>                                        | The United Nations Formulated the International Law of the Sea <b>511</b>                    |
| Hydrothermal Vents and Cold Seeps Support Diverse Communities <b>486</b>                      | The U.S. Exclusive Economic Zone Extends 200 Nautical Miles from Shore <b>512</b>            |
| Whale-Fall Communities Represent Unique Opportunities <b>488</b>                              | Questions from Students <b>513</b>                                                           |
| 16.5 Organisms in Communities Can Live in Symbiosis <b>488</b>                                | Chapter in Perspective <b>515</b>                                                            |
| Questions from Students <b>490</b>                                                            | Terms and Concepts to Remember <b>515</b>                                                    |
| Chapter in Perspective <b>491</b>                                                             | Study Questions <b>515</b>                                                                   |
| Terms and Concepts to Remember <b>491</b>                                                     |                                                                                              |
| Study Questions <b>491</b>                                                                    |                                                                                              |
| <b>17 Marine Resources 492</b>                                                                | <b>18 The Ocean and the Environment 516</b>                                                  |
| 17.1 Marine Resources Are Subject to the Economic Laws of Supply and Demand <b>494</b>        | 18.1 An Introduction to Marine Environmental Issues <b>518</b>                               |
| 17.2 Physical Resources <b>495</b>                                                            | 18.2 Marine Pollutants May Be Natural or Human Generated <b>518</b>                          |
| Petroleum and Natural Gas Are the Ocean's Most Valuable Resources <b>495</b>                  | Pollutants Interfere with an Organism's Biochemical Processes <b>518</b>                     |
| Large Methane Hydrate Deposits Exist in Shallow Sediments <b>496</b>                          | <b>Insight from a National Geographic Explorer 519</b>                                       |
| Marine Sand and Gravel Are Used in Construction <b>497</b>                                    | Oil Enters the Ocean from Many Sources <b>520</b>                                            |
| Salts Are Harvested from Evaporation Basins <b>498</b>                                        | Cleaning a Spill Always Involves Trade-offs <b>522</b>                                       |
| Freshwater Is Obtained by Desalination <b>498</b>                                             | Toxic Synthetic Organic Chemicals May Be Biologically Amplified <b>523</b>                   |
| 17.3 Marine Energy <b>499</b>                                                                 | Heavy Metals Can Be Toxic in Very Small Quantities <b>525</b>                                |
| Windmills Are Effective Energy Producers <b>499</b>                                           | Eutrophication Stimulates the Growth of Some Species to the Detriment of Others <b>525</b>   |
| Waves, Currents, and Tides Can Be Harnessed to Generate Power <b>500</b>                      | <b>Box 18.1: Minamata's Tragedy 526</b>                                                      |
| 17.4 Biological Resources <b>500</b>                                                          | Plastic and Other Forms of Solid Waste Can Be Especially Hazardous to Marine Life <b>526</b> |
| Fish, Crustaceans, and Molluses Are the Ocean's Most Valuable Biological Resources <b>501</b> | Phytoplankton Are in Decline <b>528</b>                                                      |
| Today's Fisheries Are Not Sustainable <b>502</b>                                              | Pollution Is Costly <b>528</b>                                                               |
| Much of the Commercial Catch Is Discarded as "Bycatch" <b>503</b>                             | <b>18.3 Organisms Cannot Prosper if Their Habitats Are Disturbed 529</b>                     |
| Marine Botanical Resources Have Many Uses <b>504</b>                                          | Bays and Estuaries Are Especially Sensitive to the Effects of Pollution <b>529</b>           |
| Organisms Can Be Grown in Controlled Environments <b>504</b>                                  | Introduced Species Can Disrupt Established Ecosystems <b>530</b>                             |
| Whaling Continues <b>505</b>                                                                  | Coral Reefs Are Stressed by Environmental Change <b>530</b>                                  |
| New Drugs and Bioproducts of Oceanic Origin Are Being Discovered <b>506</b>                   | Rising Ocean Acidity Is Jeopardizing Habitats and Food Webs <b>531</b>                       |
| 17.5 Nonextractive Resources Include Transport and Recreation <b>507</b>                      | Sound Is Also a Pollutant <b>531</b>                                                         |
|                                                                                               | <b>18.4 Marine Protected Areas Are Refuges 533</b>                                           |
|                                                                                               | <b>18.5 Earth's Climate Is Changing 533</b>                                                  |
|                                                                                               | Earth's Surface Temperature Is Rising <b>533</b>                                             |



AP Photo/Jon Paul Vilhelmsen

|                                                          |                                              |
|----------------------------------------------------------|----------------------------------------------|
| Mathematical Models Are Used to Predict Future Climates  | 539                                          |
| Can Global Warming Be Curtailed? Should It Be Curtailed? | 541                                          |
| <b>18.6 What Can Be Done?</b>                            | 542                                          |
| Questions from Students                                  | 544                                          |
| Chapter in Perspective                                   | 545                                          |
| Terms and Concepts to Remember                           | 546                                          |
| Study Questions                                          | 546                                          |
| <b>Afterword</b>                                         | 547                                          |
| <b>Appendix I</b>                                        | Measurements and Conversions                 |
|                                                          | 548                                          |
| <b>Appendix II</b>                                       | Geologic Time                                |
|                                                          | 552                                          |
| <b>Appendix III</b>                                      | Latitude and Longitude, Time, and Navigation |
|                                                          | 553                                          |

|                      |                                              |
|----------------------|----------------------------------------------|
| <b>Appendix IV</b>   | Maps and Charts                              |
|                      | 556                                          |
| <b>Appendix V</b>    | The Beaufort Scale                           |
|                      | 560                                          |
| <b>Appendix VI</b>   | Taxonomic Classification of Marine Organisms |
|                      | 561                                          |
| <b>Appendix VII</b>  | Periodic Table of the Elements               |
|                      | 563                                          |
| <b>Appendix VIII</b> | Working in Marine Science                    |
|                      | 564                                          |
| <b>Appendix IX</b>   | The World Ocean Seafloor                     |
|                      | 568                                          |
| <b>Glossary</b>      | 576                                          |
| <b>Index</b>         | 594                                          |