
Contents

PREFACE	xvii
PREFACE TO COMPUTER MATERIALS	xxi
1 APPROACHING THE SUBSURFACE	1
<i>What Are the Options?, 1</i>	
<i>Some Fundamental Considerations, 2</i>	
<i>Defining Objectives, 3</i>	
<i>Limitations, 4</i>	
<i>The Advantage of Multiple Methods, 5</i>	
2 SEISMIC EXPLORATION: FUNDAMENTAL CONSIDERATIONS	7
Seismic Waves and Wave Propagation	7
<i>Wave Terminology, 9</i>	
<i>Elastic Coefficients, 11</i>	
<i>Seismic Waves, 14</i>	
<i>Seismic Wave Velocities, 17</i>	

Ray Paths in Layered Materials	19
<i>Huygens' Principle</i> , 20	
<i>Fermat's Principle</i> , 20	
<i>Reflection</i> , 21	
<i>Refraction</i> , 23	
<i>Snell's Law</i> , 25	
<i>Critical Refraction</i> , 28	
<i>Diffraction</i> , 30	
<i>Wave Arrivals at the Surface</i> , 31	
Wave Attenuation and Amplitude	35
<i>Spherical Spreading</i> , 35	
<i>Absorption</i> , 37	
<i>Energy Partitioning</i> , 38	
<i>Additional Factors</i> , 40	
Energy Sources	42
<i>Source Types</i> , 42	
<i>Source Considerations</i> , 44	
Seismic Equipment	45
<i>Signal Detection</i> , 45	
<i>Signal Conditioning</i> , 49	
<i>Signal Recording</i> , 51	
Summary	54
Problems	54
References Cited	56

3 SEISMIC EXPLORATION: THE REFRACTION METHOD 57

A Homogeneous Subsurface	57
A Single Subsurface Interface	59
<i>Derivation of Travel-Time Equation</i> , 60	
<i>Analysis of Arrival Times</i> , 62	
<i>Determining Thickness</i> , 64	
<i>Crossover Distance</i> , 64	
<i>Critical Distance</i> , 65	
<i>Constructing a Travel-Time Curve from a Field Seismogram</i> , 67	
<i>Using RefractModel and RefractSolve</i> , 68	
<i>The Mohorovičić Discontinuity</i> , 70	

Two Horizontal Interfaces	71
<i>Derivation of a Travel-Time Equation,</i>	72
<i>Determining Thickness,</i>	74
<i>Critical Distance,</i>	75
<i>Analyzing a Second Field Seismogram,</i>	78
Multiple Interfaces	79
Dipping Interfaces	80
<i>Analyzing the Problem,</i>	80
<i>Derivation of a Travel-Time Equation,</i>	86
<i>Determining Thickness,</i>	88
Multiple Dipping Interfaces	89
<i>Travel-Time Equation,</i>	89
<i>Analyzing Field Seismograms,</i>	91
The Nonideal Subsurface	95
<i>Hidden Zones: The Low-Velocity Layer,</i>	95
<i>Hidden Zones: The Thin Layer,</i>	99
<i>Laterally Varying Velocity,</i>	101
<i>Interface Discontinuities,</i>	104
The Delay-Time Method	107
Other Methods	113
<i>Wavefront Method,</i>	113
<i>Ray Tracing and the Generalized Reciprocal Method,</i>	114
Field Procedures	116
<i>Site Selection and Planning Considerations,</i>	116
<i>Equipment Considerations,</i>	117
<i>Geophone-Spread Geometries and Placements,</i>	117
<i>Corrections to Data,</i>	120
Applications Using Seismic Refraction	122
<i>Whately, Massachusetts,</i>	122
<i>Southeastern New Hampshire,</i>	124
<i>Waste-Disposal Site,</i>	124
<i>Maricopa Area, Arizona,</i>	124
Problems	127
References Cited	132
Suggested Reading	133

4 SEISMIC EXPLORATION: THE REFLECTION METHOD 134**A Single Subsurface Interface 135**

- Using ReflectModel, 135*
- Derivation of a Travel-Time Equation, 136*
- Analysis of Arrival Times, 140*
- Normal Move-Out, 144*
- Determining Velocity and Thickness, 147*
- Applying the x^2-t^2 Method to a Field Seismogram, 149*

Multiple Horizontal Interfaces 152

- The Dix Equation, 153*
- Determining Velocities, 154*
- Determining Thickness, 157*
- Further Discussion of the Dix Method, 158*
- Analyzing a Field Seismogram Containing Multiple Reflections, 164*

Dipping Interface 165

- Derivation of Travel-Time Equation, 166*
- Determining Dip, Thickness, and Velocity, 171*
- Determining Dip, Thickness, and Velocity—Another Approach, 172*
- A Return to Normal Move-Out, 174*
- Determining Dip, Thickness, and Velocity—Yet Another Approach, 178*

Acquiring and Recognizing Reflections from Shallow Interfaces 181

- The Optimum Window, 182*
- Multiple Reflections, 187*
- Diffractions, 191*

Common Field Procedures 197

- Equipment Considerations, 197*
- Geophone Spreads, 199*

Computer Processing of Reflection Data 208

- The Static Correction, 208*
- Correcting for Normal Move-Out, 211*
- Stacking CDP Gathers, 217*
- Migration, 219*
- Waveform Adjustments, 222*
- Seismic Sections: Time Sections and Depth Sections, 223*

Applying the Seismic Reflection Method 225

- Whately, Massachusetts, 226*
- Meers Fault, Oklahoma, 226*
- Cavity Detection, 228*
- Other Applications, 230*

Problems	230
References Cited	238
Suggested Reading	240

5 ELECTRICAL RESISTIVITY**241**

Introduction	241
<i>Applied Currents</i> , 241	
<i>Natural Currents</i> , 242	
<i>A Brief History</i> , 242	
<i>Chapter Goals</i> , 243	
Basic Electricity	243
<i>Point Current Source</i> , 246	
<i>Two Current Electrodes</i> , 247	
<i>Two Potential Electrodes</i> , 252	
A Single Horizontal Interface	254
<i>Current Distribution</i> , 255	
<i>Current Flow Lines and Current Density</i> , 258	
<i>Apparent Resistivity</i> , 261	
<i>Qualitative Development of the Resistivity Pattern over a Horizontal Interface</i> , 261	
<i>Quantitative Development of the Resistivity Pattern over a Horizontal Interface</i> , 263	
<i>Using ERModel</i> , 270	
Multiple Horizontal Interfaces	274
Vertical Contact	277
<i>Constant-Spread Traverse</i> , 277	
<i>Expanding-Spread Traverse</i> , 280	
Two Vertical Contacts, Hemispherical Structures, and Dipping Interfaces	282
<i>Two Vertical Contacts</i> , 282	
<i>Hemispherical Structures</i> , 285	
<i>Dipping Interfaces</i> , 285	
Field Procedures	286
<i>Equipment</i> , 287	
<i>Electrode Configurations</i> , 288	
<i>Surveying Strategies</i> , 291	
<i>Other Considerations</i> , 293	

Quantitative Interpretation of Apparent Resistivity Curves	294
<i>Electrical Resistivities of Geologic Materials</i> , 294	
<i>Empirical Methods</i> , 295	
<i>Analytical Methods—Curve Matching</i> , 296	
<i>Analytical Methods—Automated Curve Matching</i> , 299	
Applications of Electrical-Resistivity Surveying	301
<i>Applications Related to Aquifers</i> , 301	
<i>Applications Related to Contamination</i> , 303	
<i>Applications in Mapping Karst and Geologic Structures</i> , 306	
<i>Other Applications</i> , 307	
Other Electrical Methods	307
<i>Induced Potential (IP)</i> , 308	
<i>Spontaneous Potential (SP)</i> , 309	
<i>Telluric and Magnetotelluric Methods</i> , 309	
<i>Electromagnetic Surveying (EM)</i> , 310	
Problems	310
References Cited	315
Suggested Reading	316

6 EXPLORATION USING GRAVITY

317

Fundamental Relationships	318
<i>Gravitational Acceleration</i> , 318	
Measuring Gravity	319
<i>Relative Measurements Using a Pendulum</i> , 319	
<i>Relative Measurements Using a Gravimeter</i> , 320	
<i>Absolute Measurements</i> , 322	
<i>International Gravity Standardization Net 1971 (IGSN71)</i> , 323	
Adjusting Observed Gravity	323
<i>Variation in g as a Function of Latitude</i> , 324	
<i>Correcting for the Latitude Effect</i> , 324	
<i>Elevation Correction 1: The Free-Air Correction</i> , 326	
<i>Elevation Correction 2: The Bouguer Correction</i> , 327	
<i>Elevation Correction 3: The Terrain Correction</i> , 331	
<i>The Isostatic Anomaly</i> , 336	
Basic Field Procedures	336
<i>Drift and Tidal Effects</i> , 336	
<i>Establishing Base Stations</i> , 338	

<i>Determining Elevations, 340</i>	
<i>Determining Horizontal Position, 341</i>	
<i>Selecting a Reduction Density, 341</i>	
<i>Survey Procedure, 342</i>	
Gravity Effects of Simple Geometric Shapes 344	
<i>Rock Densities, 344</i>	
<i>Gravity Effect of a Sphere, 345</i>	
<i>Gravity Effect of a Horizontal Cylinder, 347</i>	
<i>Gravity Effect of a Vertical Cylinder, 350</i>	
<i>Gravity Effect of an Inclined Rod, 353</i>	
<i>Gravity Effect of a Horizontal Sheet, 355</i>	
<i>Using GrayModel, 361</i>	
Analyzing Anomalies 362	
<i>Regionals and Residuals, 363</i>	
<i>Trend Surfaces, 366</i>	
<i>Upward and Downward Continuation, 366</i>	
<i>Second Derivatives, 370</i>	
<i>Filtering, 372</i>	
Gravity Interpretation 372	
<i>Half-Maximum Technique, 372</i>	
<i>Second-Derivative Techniques, 374</i>	
<i>Revisiting Some Bouguer Anomaly Values, 376</i>	
Applications of the Gravity Method 377	
<i>Bedrock Depths, 377</i>	
<i>Subsurface Voids, 378</i>	
<i>Landfill Geometry, 379</i>	
Problems 381	
References Cited 387	
Suggested Reading 388	

7 EXPLORATION USING THE MAGNETIC METHOD 389

Fundamental Relationships 390	
<i>Magnetic Force, 391</i>	
<i>Magnetic Field Strength, 391</i>	
<i>Magnetic Moment, 392</i>	
<i>Intensity of Magnetization, 393</i>	
<i>Magnetic Susceptibility, 394</i>	
<i>Magnetic Potential, 397</i>	

The Earth's Magnetic Field	397
<i>Field Elements</i> , 397	
<i>Dipolar Nature of the Earth's Field</i> , 399	
<i>Variations of the Earth's Field</i> , 400	
<i>Dipole Equations</i> , 403	
Measuring the Magnetic Field	405
<i>Flux-Gate Magnetometer</i> , 405	
<i>Proton-Precession Magnetometer</i> , 405	
<i>Total-Field Anomalies</i> , 406	
Basic Field Procedures	408
<i>Magnetic Cleanliness</i> , 408	
<i>Diurnal Corrections</i> , 409	
<i>Elevation Corrections</i> , 410	
<i>Correcting for Horizontal Position</i> , 410	
Magnetic Effects of Simple Geometric Shapes	412
<i>Rock Susceptibilities</i> , 412	
<i>Magnetic Effect of an Isolated Pole (Monopole)</i> , 414	
<i>Magnetic Effect of a Dipole</i> , 415	
<i>Magnetic Effect of a Sphere</i> , 421	
<i>Magnetic Effect of Thin Horizontal Sheets</i> , 426	
<i>Magnetic Effects of Polygons with Infinite Strike Length (Using MagModel)</i> , 433	
Interpretation of Magnetic Data	438
<i>Disadvantages and Advantages</i> , 438	
<i>Quantitative Interpretation Techniques</i> , 439	
Applications of the Magnetic Method	443
<i>Archaeological Surveys</i> , 443	
<i>Detection of Voids and Well Casings</i> , 444	
<i>Defining Landfill Geometry</i> , 447	
Problems	449
References Cited	451
Suggested Reading	452
APPENDICES	453
Appendix A	453
<i>RefractModel</i> , 453	
<i>RefractSolve</i> , 455	

Appendix B 460

ReflectModel, 460

ReflectSolve, 466

ReflectIVel, 467

Appendix C 467

ERModel, 467

ERSolve, 471

Appendix D 473

GravModel, 473

Appendix E 477

MagModel, 477

References 481

INDEX

483