

Contents

<i>Preface</i>	xiii
1. Overview of X-Ray Scattering and Diffraction Theory and Techniques	1
<i>Oliver H. Seeck</i>	
1.1 Scattering at Single Electrons	2
1.2 Scattering in Bulk Matter	5
1.2.1 Scattering in Disordered Matter	6
1.2.2 Scattering in Crystalline Matter	7
1.2.3 Scattering at Powders of Crystalline Matter	10
1.3 Scattering at Surfaces	12
1.3.1 Scattering at Crystal Surfaces	14
1.3.2 Scattering at Surfaces with Density Profile	16
1.3.3 Scattering at Rough Surfaces	19
1.4 Some Dynamical Scattering Theory	22
2. Scattering and Diffraction Beamlines at Synchrotron Radiation Sources	29
<i>Oliver H. Seeck</i>	
2.1 Synchrotron Radiation Sources	31
2.1.1 Bending Magnets	32
2.1.2 Wigglers	37
2.1.3 Undulators	38
2.1.4 Undulators at X-Ray Free Electron Lasers	43
2.2 Brilliance	45
2.3 Beamline Optics	47
3. Micro- and Nanodiffraction	55
<i>Christina Krywka and Martin Müller</i>	
3.1 Introduction	55
3.2 X-Ray Focusing Optics	56

3.2.1	Refractive Optics	58
3.2.1.1	Metal compound refractive lenses	58
3.2.1.2	Silicon nanofocusing refractive lenses	60
3.2.1.3	Diamond lenses	61
3.2.1.4	Polymer lenses	62
3.2.2	Diffractive Optics	62
3.2.2.1	Fresnel zone plates	62
3.2.3	Reflective Optics	65
3.2.3.1	Kirkpatrick–Baez mirror	65
3.2.3.2	Multilayer KB mirror	67
3.2.4	Beam Concentrating and Collimating Elements	67
3.2.4.1	Capillaries	67
3.2.4.2	Waveguides	69
3.3	Experiments	71
3.3.1	X-Ray Micro- and Nanodiffraction Instrumentation	72
3.3.2	Examples of Micro- and Nanodiffraction Experiments	74
3.3.2.1	Small beams and crystallographic parameters	75
3.3.2.2	μ SAXS on single-cellulose fibers	77
3.3.2.3	2D microdiffraction scanning of the wood cell wall	78
3.3.2.4	<i>In situ</i> deformation of single wood cells	81
3.3.3	Beam Damage in Microdiffraction Experiments	82
3.4	Summary	83
4.	Small-Angle X-Ray Scattering	89
	<i>Ulla Vainio</i>	
4.1	Introduction	90
4.2	Experimental Setup	91
4.2.1	Sample Cells and Optimal Sample Thickness	93
4.2.2	Corrections to Experimental Data	94

4.2.3	Absolute Intensity Scale	96
4.3	Theory	97
4.3.1	Scattering Length Density	99
4.3.2	Power Laws	100
4.3.3	Porod Constant	102
4.3.4	Scattering from Particles	103
4.3.4.1	Guinier approximation	105
4.3.4.2	Form factor	106
4.3.4.3	Structure factor	107
4.3.4.4	Polydispersity	109
4.3.4.5	Distance distribution function	110
4.3.4.6	Kratky plot and Porod invariant	111
4.3.5	Scattering from Fluctuations	113
4.3.6	Generalized Scattering Functions	113
4.4	Radiation Damage	114
4.5	BioSAXS	115
4.6	GISAXS	115
4.7	ASAXS	118
5.	The X-Ray Standing Wave Technique: Fourier Analysis with Chemical Sensitivity	129
	<i>Jörg Zegenhagen</i>	
5.1	Introduction	129
5.2	Formation of an XSW	132
5.3	XSW Analysis	133
5.4	XSW Structure Factor versus XRD Structure Factor	136
5.5	XSW Fourier Analysis: Imaging of Mn In GaAs	137
5.6	Summary	141
6.	Inelastic X-Ray Scattering from Phonons	145
	<i>Alexeï Bosak and Michael Krisch</i>	
6.1	Introduction	145
6.2	General Formalism	148
6.3	Experimental Technique	150
6.4	Mapping of Phonon Dispersion Surfaces	152
6.5	Combining IXS and TDS	154

8.4	Antiferromagnetic Coupling in Fe/Cr Multilayers	218
8.5	Spatially Resolved Magnetic Reversal in an Exchange Bias Layer System	220
8.6	Conclusion and Outlook	225
9.	Reflectivity at Liquid Interfaces	229
	<i>Brigget M. Murphy</i>	
9.1	Introduction	230
9.2	X-Ray Reflectivity	231
9.3	Fresnel Reflectivity	231
9.4	Roughness at Liquid Surfaces	234
9.5	Kinematic Scattering Theory for Liquid Surfaces	237
	9.5.1 Experimental Considerations	239
	9.5.2 Bulk Scattering	240
9.6	Instrumentation	241
	9.6.1 Single-Crystal Liquid Diffractometer	241
	9.6.2 High-Energy Liquid Diffractometer	241
	9.6.3 Double-Crystal Liquid Diffractometer	243
9.7	Examples	245
	9.7.1 Reflectivity from Water	245
	9.7.2 Reflectivity from Liquid Mercury	247
9.8	Summary	248
10.	X-Ray Diffraction at Extreme Conditions: Today and Tomorrow	255
	<i>Hanns-Peter Liermann</i>	
10.1	Introduction	255
	10.1.1 Why X-Ray Diffraction at Extreme Conditions	257
	10.1.1.1 Precise high-P and high-T equation of state studies	258
	10.1.1.2 Studies on crystallographic properties	260
	10.1.1.3 Phase stabilities studies	262
	10.1.1.4 Elastic-plastic behavior of mantle minerals	263
	10.1.2 LVP vs. DAC: Advantages and Disadvantages	266

10.1.3	The Future of X-Ray Diffraction at Extreme Conditions in the DAC at Synchrotron Facilities	267
10.2	Standard X-Ray Diffraction Techniques and Sample Environments Used at Extreme Conditions	268
10.2.1	Powder Diffraction at Simultaneous High Pressure and Temperature in the DAC	269
10.2.1.1	Laser-heated DAC	269
10.2.1.2	Resistive-heated DAC	274
10.2.2	Single Crystal Diffraction in the DAC at Simultaneous High Pressure and Temperature	279
10.2.3	Determination of Pressure at High Temperatures	281
10.2.4	Diffraction on Nano-Crystalline Powders, Amorphous Solid and Liquids: Use of the Total Scattering Function in the DAC	285
10.3	New Directions in Extreme Conditions Research at the Third- and Fourth-Generation Light Sources	287
10.3.1	Types of Dynamic Experiments to Be Conducted at the Third- and Fourth- Generation Sources	291
10.3.2	Possible Single-Exposure and Pump and Probe Experiments Using the Time Structure of PETRA III (ECB) and the European XFEL (HED) for Dynamic Experiments at Extreme Conditions	293
10.3.2.1	Single exposure experiments at third generation synchrotron	293
10.3.2.2	Pump and probe experiments at third generation synchrotron	294
10.3.2.3	Single exposure experiments at fourth generation XFEL	296

10.3.2.4	Pump and probe experiments at the fourth-generation XFEL	296
10.4	Summary	298
11. Synchrotron Tomography		315
<i>Astrid Haibel</i>		
11.1	Measurement Principle of Synchrotron Tomography	316
11.1.1	Monochromatization	317
11.2	Absorption Tomography	318
11.3	Phase-Contrast Tomography	320
11.3.1	Direct Phase-Contrast Methods	321
11.3.2	Indirect Phase-Contrast Methods	322
11.4	Tomography with Magnifying X-Ray Optics	325
11.5	Tomographic Reconstruction	326
11.5.1	Fourier Slice Theorem	327
11.6	Image Artifacts	329
11.7	Applications and Quantitative 3D Image Analysis	332
12. Coherent X-Ray Diffraction Imaging of Nanostructures		341
<i>Ivan A. Vartanyants and Oleksandr M. Yefanov</i>		
12.1	Introduction	341
12.2	Coherent and Partially Coherent Scattering on Crystals	345
12.2.1	Coherent Scattering from a Finite Size Crystal	346
12.2.2	Coherent Scattering from a Finite-Size Crystal with a Strain	355
12.2.3	Partially Coherent Scattering from a Finite-Size Crystal	358
12.3	Experimental Examples	366
12.3.1	Coherent X-Ray Imaging of Defects in Colloidal Crystals	366
12.3.2	Coherent Diffraction Tomography of Nanoislands from Grazing Incidence Small-Angle X-Ray Scattering	370
12.3.3	Coherent-Pulse 2D Crystallography at Free-Electron Lasers	374
12.4	Summary	377

13. X-Ray Photon Correlation Spectroscopy	385
<i>Christian Gutt and Michael Sprung</i>	
13.1 Introduction	385
13.2 Theory	387
13.2.1 Equilibrium Fluctuations	387
13.2.2 Two-Time Correlation Functions	389
13.3 XPCS via Split and Delay Techniques at XFEL Sources	391
13.4 X-Ray Cross-Correlation Analysis—Local Bond Order in Liquids and Glasses	392
13.5 Designing XPCS Experiments	393
13.6 Experimental XPCS Setup	396
13.7 Examples	398
13.7.1 Surface Dynamics of Thin Polymer Films	398
13.7.2 Measuring Atomic Diffusion with Coherent X-Rays	403
13.7.3 Antiferromagnetic Domain Wall Fluctuations	406
13.7.4 Reentrant Glassy Behavior	409
13.7.5 Dynamical Heterogeneity in an Aging Colloidal Gel	410
13.7.6 Local Bond Order in Colloidal Glasses	412
13.7.7 Summary	415
<i>Index</i>	421