

Contents

CHAPTER 1

Evolutionary Biology 1

- What Is Evolution?* 2
- Before Darwin* 4
- Charles Darwin* 5
- Darwin's Evolutionary Theory* 6
- Philosophical Issues* 8
- Ethics, Religion, and Evolution* 9
- Evolutionary Theories after Darwin* 10
- The Evolutionary Synthesis* 10
 - Fundamental principles of evolution 11
- Evolutionary Biology since the Synthesis* 12
- How Evolution Is Studied* 13
- Evolution as Fact and Theory* 15

CHAPTER 2

The Tree of Life: Classification and Phylogeny 19

- Classification* 21
- Inferring Phylogenetic History* 25
 - Phylogenetic trees 25
 - Data for inferring phylogenies 27
 - Inferring phylogenies: The method of maximum parsimony 30
 - Parsimony analysis of DNA sequences: An example 32
 - Statistical methods of phylogenetic analysis 34
 - Evaluating phylogenetic hypotheses 37
- Estimating Time of Divergence* 39
- Gene Trees and Species Trees* 42
 - Horizontal gene transfer 42
 - Incomplete lineage sorting 43
- Some Other Aspects of Phylogenetic Analysis* 46
- Applications and Extensions of Phylogenetics* 47

CHAPTER 3

Patterns of Evolution 51

- Inferring the History of Character Evolution* 52
- Some Patterns of Evolutionary Change Inferred from Systematics* 53
 - Most features of organisms have been modified from pre-existing features 55
 - Homoplasy is common 56
 - Rates of character evolution differ 60
 - Evolution is often gradual 61
 - Change in form is often correlated with change in function 61
 - Similarity among species changes throughout ontogeny 62
- Development and Morphological Evolution* 63
 - Individualization 63
 - Heterochrony 63
 - Allometry 64
 - Heterotopy 66
 - Increased and decreased complexity 66
- Phylogenetic Analysis Documents Evolutionary Trends* 67
- Many Clades Display Adaptive Radiation* 69
- Patterns of Evolution in Genes and Genomes* 70
 - Convergent evolution 70
 - Genome size 71
 - Duplicated genes and genomes 73

CHAPTER 4

Evolution in the Fossil Record 77

- Some Geological Fundamentals* 78
 - Plate tectonics 78
 - Geological time 79
 - The geological time scale 79
- The Fossil Record* 81
 - Evolutionary changes within species 81
 - Origins of higher taxa 82
- The Hominin Fossil Record* 90

<i>Phylogeny and the Fossil Record</i>	95
<i>Evolutionary Trends</i>	95
<i>Punctuated Equilibria</i>	96
<i>Rates of Evolution</i>	99

CHAPTER 5

A History of Life on Earth 103

<i>Patterns in the History of Life</i>	104
<i>Before Life Began</i>	104
<i>The Emergence of Life</i>	104
<i>Precambrian Life</i>	107
<i>Paleozoic Life: The Cambrian Explosion</i>	111
<i>Paleozoic Life: Ordovician to Devonian</i>	114
Marine life	114
Terrestrial life	115
<i>Paleozoic Life: Carboniferous and Permian</i>	117
Terrestrial life	117
The End-Permian mass extinction	118
<i>Mesozoic Life</i>	119
Marine life	120
Terrestrial plants and arthropods	120
Vertebrates	122
<i>The Cenozoic Era</i>	125
Aquatic life	126
Terrestrial life	126
The adaptive radiation of mammals	126
Pleistocene events	129

CHAPTER 6

The Geography of Evolution 135

<i>Biogeographic Evidence for Evolution</i>	136
<i>Major Patterns of Distribution</i>	137
<i>Historical Factors Affecting Geographic Distributions</i>	140
<i>Testing Hypotheses in Historical Biogeography</i>	142
Examples of historical biogeographic analyses	143
The composition of regional biotas	147
<i>Phylogeography</i>	148
Pleistocene population shifts	149
Modern human origins	149

<i>Geographic Range Limits: Ecology and Evolution</i>	152
Ecological niches	152
Range limits: An evolutionary problem	154
<i>Evolution of Geographic Patterns of Diversity</i>	155
Community convergence	155
Effects of history on patterns of diversity	157

CHAPTER 7

The Evolution of Biodiversity 161

<i>Estimating and Modeling Changes in Biological Diversity</i>	162
Modeling rates of change in diversity	162
Diversity in the fossil record	163
Phylogenetic studies of diversity	164
<i>Diversity and Disparity through the Phanerozoic</i>	166
Rates of origination and extinction	169
Do extinction rates change as clades age?	172
Causes of extinction	172
Mass extinctions	173
<i>Diversification</i>	176
Does species diversity reach equilibrium?	176
Why are some kinds of organisms more diverse than others?	180
Effects of organisms' features on diversification	182
Adaptive radiation	183
Other influences on diversity	185

CHAPTER 8

The Origin of Genetic Variation 189

<i>Genes and Genomes</i>	190
<i>Mutations: An Overview</i>	192
Kinds of mutations	193
Examples of mutations	197
Rates of mutation	198
Phenotypic effects of mutations	202
Effects of mutations on fitness	204
The limits of mutation	207
<i>Mutation as a Random Process</i>	208
<i>Alterations of the Karyotype</i>	209
Polyploidy	209
Chromosome rearrangements	211

CHAPTER 9

Variation: The Foundation of Evolution 217

Sources of Phenotypic Variation 219

- Genetic and environmental sources of variation 219
- Nongenetic inherited variation 221

Understanding Evolution: Fundamental Principles of Genetic Variation 223

- Frequencies of alleles and genotypes: The Hardy-Weinberg principle 224
- An example: The human MN locus 226
- The significance of the Hardy-Weinberg principle: Factors in evolution 227
- Frequencies of alleles, genotypes, and phenotypes 228
- Inbreeding 229

Genetic Variation in Natural Populations: Individual Genes 231

- Morphology and viability 231
- Inbreeding depression 232
- Genetic variation at the molecular level 233

Genetic Variation in Natural Populations: Multiple Loci 235

- Linkage and linkage disequilibrium 236
- Variation in quantitative traits 239

Variation among Populations 245

- Patterns of geographic variation 245
- Gene flow 247
- Allele frequency differences among populations 248
- Human genetic variation 250

CHAPTER 10

Genetic Drift: Evolution at Random 257

Random Processes in Evolution 258

The Theory of Genetic Drift 258

- Genetic drift as sampling error 258
- Coalescence 259
- Random fluctuations in allele frequencies 261

Evolution by Genetic Drift 263

- Effective population size 263

Founder effects 265

Genetic drift in real populations 266

The Neutral Theory of Molecular Evolution 268

- Principles of the neutral theory 269
- Support for the neutral theory 271
- Molecular clocks, revisited 272

Gene Flow and Genetic Drift 273

- Gene trees and population history 274
- The origin of modern *Homo sapiens* revisited 276

CHAPTER 11

Natural Selection and Adaptation 281

Adaptations in Action: Some Examples 282

The Nature of Natural Selection 284

- Design and mechanism 284
- Definitions of natural selection 285
- Natural selection and chance 286
- Selection of and selection for 287
- The effective environment depends on the organism 287

Examples of Natural Selection 288

- Experimental evolution 288
- Male reproductive success 289
- Group selection 290
- Kin selection 291
- Selfish genetic elements 292

Levels of Selection 292

- Selection of organisms and groups 293
- Species selection 294

The Nature of Adaptations 296

- Definitions of adaptation 296
- Recognizing adaptations 297

Adaptive Evolution Observed 301

What Not to Expect of Natural Selection and Adaptation 304

- The necessity of adaptation 304
- Perfection 304
- Progress 304
- Harmony and the balance of nature 305
- Morality and ethics 305

CHAPTER 12

The Genetic Theory of Natural Selection 309**Fitness 310**

- Modes of selection 310
- Defining fitness 312
- Components of fitness 313

Models of Selection 315

- Directional selection 315
- Deleterious alleles in natural populations 319

Polymorphism Maintained by Balancing Selection 322

- Heterozygote advantage 322
- Antagonistic and varying selection 324
- Frequency-dependent selection 325

Multiple Outcomes of Evolutionary Change 328

- Positive frequency-dependent selection 328
- Heterozygote disadvantage 329
- Adaptive landscapes 329

Interaction of Selection and Genetic Drift 330**The Strength of Natural Selection 332****Molecular Evidence for Natural Selection 333**

- Detecting selection from geographic variation 333
- A test for selection: Variation within and among species 335
- Detecting selection from DNA sequences: Theoretical expectations 336
- Molecular signatures of selection 339
- Adaptive evolution across the human genome 342
- Adaptation based on new versus standing variation 343

CHAPTER 13

Phenotypic Evolution 347**Genetic Architecture of Phenotypic Traits 349****Components of Phenotypic Variation 351****Evolution of Quantitative Traits by Genetic Drift 354****Selection on Quantitative Traits 355**

- Response to directional selection 355
- Responses to artificial selection 356
- Directional selection in natural populations 357
- Stabilizing and disruptive selection 359

Correlated Evolution of Quantitative Traits 360

- Correlated selection 360
- Genetic correlation 361

How genetic correlation affects evolution 362

Can Genetics Predict Long-Term Evolution? 363**Norms of Reaction 366**

- Canalization 366
- Phenotypic plasticity 367
- Evolution of variability 368

Adaptation and Constraint 372

- Genetic constraints on adaptation 372
- Can adaptation rescue species from extinction? 373

CHAPTER 14

The Evolution of Life Histories 379**Individual Selection and Group Selection 381****Modeling Optimal Phenotypes 382****Life History Traits as Components of Fitness 384**

- Fecundity, semelparity, and iteroparity 384
- Age structure and reproductive success 386

Trade-Offs 387**The Evolution of Life History Traits 389**

- Life span and senescence 389
- Age schedules of reproduction 390
- Number and size of offspring 393

Life Histories and Mating Strategies 394**Evolution of the Rate of Increase 395**

CHAPTER 15

Sex and Reproductive Success 399**The Evolution of Mutation Rates 400****Sexual and Asexual Reproduction 401****The Paradox of Sex 401**

- Benefits and costs of recombination and sex 401
- Hypotheses for the advantage of sex and recombination 403

Sex Ratios and Sex Allocation 406**Inbreeding and Outcrossing 409****The Concept of Sexual Selection 411****Contests between Males and between Sperm 412****Sexual Selection by Mate Choice 414**

- Direct benefits of mate choice 414

Mate choice without direct benefits 415

Variations on the theme of sexual selection 420

CHAPTER 16**Conflict and Cooperation 427****Modelling Conflict 428****Social Interactions and Cooperation 430**

Cooperation among unrelated individuals 431
 The evolution of altruism by means of shared genes 434

**An Arena for Cooperation and Conflict:
 The Family 438**

Mating systems and parental care 438
 Infanticide, abortion, sibling competition, and siblicide 440
 Parent-offspring conflict 441
 Eusociality 442

Kin Selection or Group Selection? 444**Genetic Conflict 445**

Cytoplasmic inheritance 446
 Meiotic drive 446
 Post-segregation distorters 447
 Transposable elements 448
 Conflict between parental genomes 448

**Parasites, Mutualists, Individuals, and Levels of
 Organization 449****Human Behavior and Human Societies 450**

Evolutionary approaches to human behavior 451
 Cultural evolution and gene-culture coevolution 454

CHAPTER 17**Species 459****What Are Species? 460**

Phylogenetic species concepts 461
 The biological species concept 461
 Domain and application of the biological species concept 463

Barriers to Gene Flow 464

Premating barriers 465
 Postmating, prezygotic barriers 468
 Postzygotic barriers 468
 Multiple isolating barriers 469

How Species Are Diagnosed 469**Differences among Species 470****The Genetic Basis of Reproductive Isolation 472**

Chromosome differences and postzygotic isolation 472
 Genes affecting reproductive isolation 473

The significance of genetic studies of reproductive isolation 476

Genetic Divergence and Exchange 476

Ancestral variation and coalescence 476
 Gene flow and hybridization 478
 The fate of hybrid zones 481

CHAPTER 18**Speciation 483****Modes of Speciation 484****Allopatric Speciation 485**

Evidence for allopatric speciation 486
 Mechanisms of vicariant allopatric speciation 488
 Ecological selection and speciation 489
 Sexual selection and speciation 492
 Reinforcement of reproductive isolation 494
 Peripatric speciation 496

**Alternatives to Allopatric Speciation: Speciation with
 Gene Flow 499**

Genomic studies of speciation with gene flow 500
 Parapatric speciation 501
 Sympatric speciation 502

Polyplody and Recombinational Speciation 505

Polyplody 505
 Recombinational speciation 507

How Fast Is Speciation? 508**Consequences of Speciation 509****CHAPTER 19****The Evolution of Interactions
 among Species 513****Interactions among Species 514**

Coevolution 515
 Phylogenetic aspects of species associations 515

Coevolution of Enemies and Victims 517

Models of enemy-victim coevolution 518
 Examples of predator-prey evolution 519
 Aposematism and mimicry 521
 Plants and herbivores 522
 Parasite-host interactions and infectious disease 525

Mutualisms 529

The Evolution of Competitive Interactions	531
Evolution and Community Structure	534

CHAPTER 20

Evolution of Genes and Genomes 537

Diverse Players and Evolutionary Processes in Genomes	539
Nonadaptive Processes in Genome Evolution	541
Rates and Patterns of Protein Evolution	542
Codon bias	542
Gene dispensability and selection for translational robustness	543
Protein interactions and rates of evolution	544
Developmental biology and rates of protein evolution	545

Genome Diversity and Evolution 546

Diversity of genome structure	546
Viral and microbial genomes: The smallest genomes	547
Repetitive sequences and transposable elements	548

Natural Selection Across the Genome 550

Molecular convergence as evidence for natural selection	551
Molecular evolution in the human lineage	553

Origin of New Genes 554

Horizontal gene transfer	554
Exon shuffling, protein domain evolution, and chimerism	555

Gene Duplication 556

The fates of duplicate genes	557
Ohno's dilemma, molecular promiscuity, and the selective fates of recently duplicated loci	558
Multigene families and the origin of key innovations	560

Genome and Chromosome Duplication 562

CHAPTER 21

Evolution and Development 565

Hox Genes and the Dawn of Modern EDB	566
Evolution of Hox gene expression and function	570
New concepts of homology	571

Evidence of Developmental Evolution Underlying Morphological Evolution 572

Evolutionarily Conserved Developmental Pathways	575
--	-----

Gene Regulation: A Keystone of Developmental Evolution	578
---	-----

Protein-Coding Sequences and Phenotypic Evolution	582
--	-----

The Molecular Genetic Basis of Gene Regulatory Evolution	583
---	-----

Modularity in morphological evolution	585
---------------------------------------	-----

Macroevolution and the evolution of novel characters	586
--	-----

The Evolution of Morphological Form 589

The developmental genetics of heterochrony	590
The evolution of allometry	593

Developmental Constraints and Morphological Evolution 594

Character Loss, Reversal, and Dollo's Law 596

Ecological Developmental Biology 597

Evolution of Human Development 600

CHAPTER 22

Macroevolution: Evolution above the Species Level 605

Rates of Evolution 606

Gradualism and Saltation 609

Phylogenetic Conservatism and Change 611

The Evolution of Novelty 614

Accounting for incipient and novel features	614
Complex characteristics	615

Trends, Predictability, and Progress 620

Trends: Kinds and causes	621
Examples of trends	621
Are there major trends in the history of life?	623
Predictability and contingency in evolution	626
The question of progress	628

CHAPTER 23

Evolutionary Science, Creationism, and Society 631

Creationists and Other Skeptics 632

Science, Belief, and Education 634

The nature of science	634
-----------------------	-----

Evolution as fact and as theory	635
---------------------------------	-----

The Evidence for Evolution 636

- The fossil record 637
- Phylogenetic and comparative studies 637
- Genes and genomes 638
- Biogeography 638
- Failures of the argument from design 639
- Evolution, and its mechanisms, observed 640

Refuting Creationist Arguments 641

- On arguing for evolution 645

Why Should We Teach Evolution? 646

- Health and medicine 647

- Agriculture and natural resources 650
- Environment and conservation 651
- Human behavior 652
- Understanding nature and humanity 654

Glossary G-1***Literature Cited LC-1******Illustration Credits IC-1******Index I-1***