

Contents

Preface	xi
Acknowledgements	xiii
1 Molecular Genetics in Ecology	01
What is molecular ecology?	01
The emergence of molecular ecology	02
Protein allozymes	04
Allozymes as genetic markers	06
An unlimited source of data	09
Mutation and recombination	10
Is genetic variation adaptive?	14
Polymerase chain reaction	15
Primers	18
Sources of DNA	20
Getting data from PCR	23
DNA sequencing	24
Second-generation sequencing	27
Third-generation sequencing	28
Quantitative PCR	29
Overview	31
Chapter summary	31
Useful websites and software	32
Further reading	33
Review questions	33
2 Molecular Markers in Ecology	35
Understanding molecular markers	35
Modes of inheritance	35
Nuclear versus organelle	36
Animal mitochondrial DNA	36
Plant mitochondrial DNA	39
Plastids, including chloroplast DNA	41

Haploid chromosomes	44
Identifying hybrids	46
Uniparental markers: A cautionary note	48
Molecular markers	50
Co-dominant markers	51
Allozymes	52
RFLPs	54
DNA sequences	56
SNPs	60
Microsatellites	62
Dominant markers	67
RAPDs	68
AFLPs	69
Overview	72
Chapter summary	72
Useful websites and software	73
Further reading	74
Online activities	74
Review questions	75
3 Genetic Analysis of Single Populations	77
Why study single populations?	77
What is a population?	77
Quantifying genetic diversity	82
Hardy–Weinberg equilibrium	83
Estimates of genetic diversity	87
Haploid diversity	91
Choice of marker	92
What influences genetic diversity?	93
Genetic drift	93
What is effective population size?	94
Quantifying census population size	95
Quantifying effective population size	96
Single-Sample Estimators	96
Temporal method	98
Demographic influences on N_e	102
Sex ratios	103
Variation in reproductive success	104
Fluctuating population size	105
N_e , genetic drift and genetic diversity	107
Population bottlenecks	109
Founder effects and invasive species	110
Natural selection	111
The major histocompatibility complex	114
Reproduction	116
Inbreeding	117
Polyploidy	119

Overview	123
Chapter summary	124
Useful websites and software	125
Further reading	126
Online activities	127
Review questions	127
4 Genetic Analysis of Multiple Populations	129
Why study multiple populations?	129
Quantifying population subdivision	129
Genetic distance	130
F-statistics	131
Interpreting F_{ST}	134
Non- <i>a priori</i> identification of populations	139
Quantifying gene flow	143
Direct methods	143
Indirect methods	146
Assignment tests	147
What influences gene flow?	148
Barriers to dispersal	149
Landscape genetics	150
Metapopulations	154
Interspecific interactions	155
Hybridization	156
Population differentiation: genetic drift and natural selection	159
Gene flow and genetic drift	160
Gene flow and local adaptation	162
Drift versus selection	163
Patterns of molecular evolution	165
Discordant genetic differentiation	166
Cline variations in allele frequencies: F_{ST} versus Q_{ST}	169
Overview	173
Chapter summary	173
Useful websites and software	175
Further reading	175
Online activities	176
Review questions	177
5 Studying Ecologically Important Traits: Ecogenomics, QTL Analysis, and Reverse Genetics	179
Studying ecologically important traits	179
cDNA libraries and ESTs	180
Microarrays	181
How do microarrays work?	182

Probes	188
Verifying differences in gene expression	189
Microarray applications	189
Variation within individuals	189
Variation between species	191
Sequence differences	193
Differences in gene expression	194
Microarrays and community ecology of microorganisms	197
Microorganism functions	199
Microarrays and genotyping	201
Connecting genotype to phenotype	203
Reverse genetics	204
QTL analysis	205
Linkage mapping	206
QTL mapping	212
QTL mapping of ecologically important traits	216
Overview	220
Chapter summary	221
Useful websites and software	222
Further reading	222
Review questions	223
6 Phylogeography	225
What is phylogeography?	225
Molecular markers in phylogeography	225
Organelle versus nuclear markers	225
Repetitive versus non-repetitive markers	229
Neutral versus adaptive markers	230
Molecular clocks	231
Bifurcating trees	235
The coalescent	239
Applying the coalescent	240
Networks	242
Nested Clade Phylogeographic analysis and statistical phylogeography	244
The distributions of genetic lineages	247
Subdivided populations	248
Dispersal and vicariance	248
Comparative phylogeography	250
Regional concordance	251
Continental concordance	252
European post-glacial recolonization routes	253
Dispersal and invasive species	255
Allele sharing between species	259
Lineage sorting	259
Hybrid zones	261
Overview	265

Chapter summary	266
Useful websites and software	267
Further reading	268
Online activities	268
Review questions	269
7 Behavioural Ecology	271
Why use molecules to study behaviour?	271
Mating systems	272
Parentage analysis	275
Extra-pair fertilizations	280
Who achieves EPFs?	284
Does environment influence EPFs?	285
Mate choice	286
Post-copulatory mate choice	288
Social breeding	289
Social insects	293
Manipulating sex ratios	295
Sex ratio conflicts	298
Sex-biased dispersal	299
Nuclear and mitochondrial markers	300
Relatedness	302
F_{ST} values	302
Assignment tests	304
Spatial autocorrelation	305
Concordant results	307
Predators and prey	309
Identifying prey	309
Predation and conservation	312
Overview	313
Chapter summary	314
Useful websites and software	315
Further reading	316
Online activities	316
Review questions	317
8 Conservation Genetics	319
The need for conservation	319
Taxonomy	322
Species concepts	322
DNA barcoding	324
Subspecies	331
Conservation units	332
Hybrids	333
Population size, genetic diversity and inbreeding	335

Inbreeding depression	337
Heterozygosity fitness correlations	342
Self-fertilization	344
Inbreeding avoidance	345
Outbreeding depression	346
Translocations	348
Genetic rescue	349
Source populations	351
Restoration genetics	354
Captive breeding	356
Maximizing genetic diversity	356
Captive inbreeding and outbreeding	358
Genetic diversity banks	359
Overview	362
Chapter summary	362
Useful websites and software	363
Further reading	364
Online activities	365
Review questions	365
Glossary	367
Answers to Review Questions	385
References	395
Index	433